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 Abstract 

 

 An approximate solution is developed using the direct method for a specific class of 

optimal control problems in systems governed by nonlinear boundary value problems of 

parabolic type. These problems are particularly significant in the modeling and optimization of 

dynamic processes distributed over space and time. The methodology is based on constructing 

finite-dimensional approximations of the original infinite-dimensional problem, allowing for a 

practical computational approach. By applying a priori estimate for the solutions of systems of 

linear ordinary differential equations, the convergence of the proposed direct method is 

rigorously proven. This convergence guarantees that the approximate solutions approach the 

exact solution of the original control problem in terms of minimizing the given functional. 

Furthermore, a constructive scheme for generating a minimizing sequence of controls is 

introduced, which depends on the chosen class of admissible controls. This scheme provides a 

systematic way to approach optimality in practical applications. As a practical illustration, the 

study presents an example related to determining the optimal technological regime for the 

operation of gas wells, which demonstrates the applicability of the proposed method to real-

world engineering problems. The developed approach can serve as a valuable computational 

tool for solving similar optimal control problems in distributed parameter systems. 

  

 Keywords: boundary value problems, direct method, convergence in terms of the 

functional, minimizing sequence 

 

 

1. Introduction 

 

The foundations of theoretical research and practical developments in distributed 

parameter systems were laid more than half a century ago in the papers of Butkovsky [1]. Since 

then, the theory of control for distributed parameter systems has been enriched with new ideas 

and results. Each year, more publications emerge across various subfields. However, many 

significant aspects of this theory remain underdeveloped, particularly in the context of optimal 

control problems for systems with processes that are described by nonlinear boundary value 

problems of parabolic type. In addition to the complexity introduced by the nonlinearity of 

boundary problems, constraints on control actions and the system's state variables necessitate 

approximate optimization methods. 
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It is also worth noting that the relevance of studying optimal control problems for 

nonlinear distributed parameter systems stems from the fact that, in real-world systems, control 

is typically exercised via devices with lumped parameters. Optimal control problems of this 

type were first addressed in the mid-1960s by Yegorov, who primarily derived necessary 

optimality conditions in the form of the Pontryagin maximum principle. From the early 1970s 

onwards, as such problems gained prominence, they became the focus of numerous researchers 

[2–6]. 

In [2], the problem of suppressing oscillations in a coupled system was examined, where 

the system is described by a set of wave equations and a second-order ordinary differential 

equation. It is assumed that the control function and the lumped parameter object act on the left 

and right boundaries of the distributed system, respectively. The system’s state functions are 

linked through the boundary conditions of the wave equation. The problem was solved using 

D’Alembert’s formula, and finite-dimensional approximations were constructed using the 

direct method. A numerical solution to this problem was later obtained in [3], where the direct 

method was combined with a gradient projection method using a specially chosen step size. 

The results confirmed the convergence of the method for the functional. Problems of this nature 

can arise, for instance, in the control of gas flows in long pipelines or electromagnetic 

oscillations in extended electrical lines – processes that can be controlled using lumped 

parameter devices. 

In [4], an optimal control problem governed by a nonlinear two-dimensional gas filtration 

equation was considered, though no numerical results were provided. A numerical solution to 

an optimal control problem governed by a two-dimensional gas filtration equation in a porous 

medium with a low-permeability overburden was obtained in [5]. The method of averaging was 

used to reduce the original boundary problem to a one-dimensional equation, and the direct 

method was employed for the numerical solution. 

In [6], an optimal technological regime for gas well operation was determined by 

regulating bottom-hole pressure within a specified range. This problem reduces to an optimal 

control problem for a system governed by a nonlinear one-dimensional unsteady gas filtration 

equation in a porous medium and an ordinary differential equation. 

In the present paper, the direct method is used to approximately solve a class of optimal 

control problems for processes described by nonlinear parabolic equations with initial and 

boundary conditions. For the problem under consideration, using known priori estimates for the 

solutions of systems of linear ordinary differential equations, the convergence of the solution 

of the approximating boundary value problem to the solution of the original problem is proven. 

Based on this, the convergence of the approximate solution of the corresponding optimal control 

problem in terms of the functional is also established. A constructive scheme for building 

optimal control is proposed. 

  

2. Experiments 

 

Let there be some controlled processes in the domain 𝑄 =  { 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇 } that 

are described by a boundary value problem of the following type 
 

𝑢𝑡 = 𝐹(𝑥, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝛼),  𝐹𝑢𝑥𝑥
≥ 𝑎0 = 𝑐𝑜𝑛𝑠𝑡 > 0,           (2.1) 

𝑢(0, 𝑡) = 𝑎(𝑡),  𝑢(1, 𝑡) = 𝑏(𝑡),  0 ≤ 𝑡 ≤ 𝑇,                     (2.2) 

𝑢(𝑥, 0) = 𝜔(𝑥),  0 ≤ 𝑥 ≤ 1,    (2.3) 
 

It is assumed that the function 𝐹(𝑥, 𝑡, 𝑝, 𝑞, 𝑟, 𝛼) is continuous and sufficiently smooth for 

all (𝑥, 𝑡) ∈ 𝑄  and all real values 𝑝, 𝑞, 𝑟  and 𝛼 . It is also assumed that 𝐹, 𝐹𝑝, 𝐹𝑞𝑥
, 𝐹𝑟 , 𝐹𝛼  are 

uniformly bounded for the specified values of its arguments and continuous in t. Functions 

𝑎(𝑡), 𝑏(𝑡) and 𝜔(𝑥) are continuous in the corresponding domains and satisfy the following 

agreement conditions 𝑎(0) = 𝜔(0), 𝑏(0) = 𝜔(1).  The control function 𝛼 = 𝛼(𝑥, 𝑡)   takes 

values from some closed domains, defined, for example, by the inequalities |𝛼(𝑥, 𝑡)| ≤ 1 and 
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in the domain Q, it has a finite number of non-intersecting smooth discontinuity lines. We will 

call such control admissible. The problem of finding the function 𝑢(𝑥, 𝑡) from conditions (2.1) 

– (2.3) with fixed control is called a direct problem. 

It is required to find such an admissible control ),( tx =  and the corresponding 

solution �̅�(𝑥, 𝑡) of the direct problem (2.1) – (2.3), so that the functional 

         𝑆(𝛼) = ∫ 𝐺(𝑥, 𝑢(𝑥, 𝑇))𝑑𝑥
1

𝑜
,                                               (2.4)  

takes the smallest possible value, where 𝐺(𝑥, 𝑢) is a given continuously differentiable function 

of its arguments, and the functions 𝐺𝑥, 𝐺𝑢 are uniformly bounded. Functional (2.4) is chosen in 

this form only to shorten the notation. Note that the issues of solvability of the boundary value 

problem (2.1) – (2.4) by the method of lines are studied in [7]. 

The method of lines is used for an approximate solution of problem (2.1) – (2.4). Let  �̅�ℎ 

uniform grid of lines in a segment 0 ≤ 𝑥 ≤ 1 with the distance ℎ between nodal points 𝑥ℎ
𝑖 =

𝑖ℎ, 𝑖 = 0,1, . . . , 𝑁, 𝑁ℎ = 1. Let us denote by 𝜙ℎ
𝑖 (𝑡) value of an arbitrary function𝜙(𝑥, 𝑡) in 

nodes 𝑥ℎ
𝑖  of a grid �̅�ℎ, and in the internal nodes of this grid we replace the direct problem (2.1) 

– (2.3) with a system of differential-difference equations:  
 

𝑑𝑢ℎ
𝑖

𝑑𝑡
= 𝐹 (𝑥ℎ

𝑖 , 𝑡, 𝑢ℎ
𝑖 ,

𝛥𝑐𝑢ℎ
𝑖

2ℎ
, 

𝛥2𝑢ℎ
𝑖

ℎ2
, 𝛼ℎ

𝑖 (𝑡)) ,  1 ≤ 𝑖 ≤ 𝑁 − 1,          (2.5) 

 

𝑢ℎ
0 = 𝑎(𝑡),  𝑢ℎ

𝑁 = 𝑏(𝑡)                          (2.6) 
 

 with initial conditions 
 

        𝑢ℎ
𝑖 (0) = 𝜔(𝑥ℎ

𝑖 ), 𝑖 = 0,1, . . . , 𝑁,                                      (2.7) 
 

Thus, problem (2.1) – (2.4) is reduced to the choice of function �̅�ℎ
𝑖 (𝑡) from the conditions 

of the minimum functional 
 

   𝑆ℎ (𝛼ℎ
𝑖 (𝑡)) = ℎ ∑ 𝐺 (𝑥ℎ

𝑖 , 𝑢ℎ
𝑖 (𝑇))

𝑁−1

𝑖=0
                                             (2.8) 

 

under conditions (2.5) – (2.7). 

Let us denote by 𝛿ℎ
𝑖 (𝑡) = 𝑢(𝑥ℎ

𝑖 , 𝑡) − 𝑢ℎ
𝑖 (𝑡), 𝑖 = 0,1, . . . , 𝑁,where 𝑢(𝑥ℎ

𝑖 , 𝑡)  is the exact 

solution of problem (2.1) – (2.3), and 𝑢ℎ
𝑖 (𝑡) is solution of the differential-difference problem 

(2.5) – (2.7). Substituting into (2.5) – (2.7) the exact solution 𝑢(𝑥ℎ
𝑖 , 𝑡) of the direct problem 

(2.1) – (2.3), we have:   
 

𝜕𝑢(𝑥ℎ
𝑖 ,𝑡)

𝜕𝑡
= 𝐹 (𝑥ℎ

𝑖 , 𝑡, 𝑢(𝑥ℎ
𝑖 , 𝑡),

𝛥𝑐𝑢(𝑥ℎ
𝑖 ,𝑡)

2ℎ
,

𝛥2𝑢(𝑥ℎ
𝑖 ,𝑡)

ℎ2 , 𝛼ℎ
𝑖 (𝑡)) + 𝑂(ℎ2),  1 ≤ 𝑖 ≤ 𝑁 − 1,   (2.9) 

𝑢(𝑥ℎ
0, 𝑡) = 𝑎(𝑡), 𝑢(𝑥ℎ

𝑁 , 𝑡) = 𝑏(𝑡),                (2.10) 

 

where  

𝛥𝑐𝑢(𝑥ℎ
𝑖 , 𝑡) = 𝑢(𝑥ℎ

𝑖+1, 𝑡) − 𝑢(𝑥ℎ
𝑖−1, 𝑡), 𝛥2𝑢(𝑥ℎ

𝑖 , 𝑡) = 𝑢(𝑥ℎ
𝑖+1, 𝑡) − 2𝑢(𝑥ℎ

𝑖 , 𝑡) + 𝑢(𝑥ℎ
𝑖−1, 𝑡). 

Subtracting from (2.9) and (2.10), respectively, the relations (2.5) and (2.6), we compose 

for the errors 𝛿ℎ
𝑖 (𝑡) system of inhomogeneous equations: 

 

𝑑𝛿ℎ
𝑖 (𝑡)

𝑑𝑡
= �̃�𝑝𝛿ℎ

𝑖 (𝑡) + �̃�𝑞
𝛥𝑐𝛿ℎ

𝑖 (𝑡)

2ℎ
+ �̃�𝑟

𝛥2𝛿ℎ
𝑖 (𝑡)

ℎ2 + 𝑂(ℎ2),   1 ≤ 𝑖 ≤ 𝑁 − 1,                    (2.11) 

𝛿ℎ
𝑖 (𝑡) = 0,   𝛿ℎ

𝑁(𝑡) = 0                                              (2.12) 

with zero initial data 

𝛿ℎ
𝑖 (0) = 0, 𝑖 = 0,1, . . . , 𝑁,                     (2.13) 
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where by the icon ~ the values of the derivatives at intermediate points are indicated. 

Applying the well-known estimate from [9] for solutions of a system of linear 

inhomogeneous ordinary differential equations to the solution 𝛿ℎ
𝑖 (𝑡) we have  

 

          max
1≤𝑖≤𝑁−1

|𝛿ℎ
𝑖 (𝑡)| ≤ ∫ 𝑂(ℎ2)

𝑇

0
𝑒

∫ max𝑐(𝑥ℎ
𝑖 ,𝜏)𝑑𝜏

𝑡

𝑠 𝑑𝑠,                        (2.14) 

 

where 𝑐(𝑥ℎ
𝑖 , 𝑡) = �̃�𝑝. From inequalities (2.14) it follows that the solution of the differential-

difference boundary value problem (2.5) – (2.7) tends with the speed 𝑂(ℎ2) under ℎ → 0 to the 

solution of the boundary value problem (2.1) – (2.3). 

If we denote 

𝑆ℎ
0 = inf

𝛼𝑛
𝑖

𝑆ℎ(𝛼ℎ
𝑖 ) = 𝑆ℎ (�̅�ℎ

𝑖 (𝑡)). 

 

After applying the Cauchy-Bunyakovsky inequality, it can be shown that the inequality holds 

 

|𝑆(𝛼(𝑥, 𝑡)) − 𝑆ℎ(𝛼ℎ
𝑖 (𝑡))| ≤ 𝐶ℎ,                     (2.15) 

 

where C does not depend on h.  From (2.15) it follows that 
 

lim
ℎ→0

 𝑆ℎ
0 = min

𝛼
𝑆(𝛼) = 𝑆(�̅�(𝑥, 𝑡)), 

 

that is, there is convergence in functional. 

THEOREM. Let �̅�ℎ
𝑖 (𝑡) is the optimal control in the approximating optimal problem, 

and  �̅�ℎ
𝑖 (𝑥, 𝑡) is a continuation of function �̅�ℎ

𝑖 (𝑡) from the grid �̅�ℎ for all domain Q. Then the 

sequence of controls  �̅�ℎ
𝑖 (𝑥, 𝑡) is minimizing for the functional (2.4) in problem (2.1) – (2.4). 

   

PROOF. Let ℎ𝑚 is a sequence of positive numbers that tends to zero under 𝑚 → ∞, and 

�̅�ℎ𝑚

𝑖 (𝑡)  is a sequence of optimal solutions of the approximating problem (2.5) – (2.8), 

corresponding to ℎ𝑚. Let's continue the functions �̅�ℎ𝑚

𝑖 (𝑡) from a grid of lines �̅�ℎ for the whole 

domain Q, considering, in particular,  for 𝑥ℎ
𝑖 ≤ 𝑥 ≤ 𝑥ℎ

𝑖+1, 0 ≤ 𝑡 ≤ 𝑇, 𝑖 = 0,1, . . . , 𝑁 − 1. 

Let us prove that when 𝑚 → ∞ the control sequence �̅�ℎ𝑚

𝑖 (𝑥, 𝑡)  is minimizing for the 

functional (2.4). For definiteness, we assume that the functional (2.4) on the set of admissible 

controls has a finite lower bound. Let 𝛼𝑚(𝑥, 𝑡) is some other minimizing sequence for the 

functional (2.4), that is, 
 

lim
𝑚→∞

𝑆(𝛼𝑚(𝑥, 𝑡)) = inf
𝛼

 𝑆(𝛼) < +∞                  (2.16)    

 

In the approximating optimal problem (3.1) – (3.3), instead of 𝛼ℎ
𝑖 (𝑡) we put 𝛼𝑚(𝑥ℎ𝑚

𝑖 , 𝑡). 

Then considering that �̅�ℎ𝑚

𝑖 (𝑡) is the optimal control for problem (2.1) – (2.3), we have 
 

        𝑆ℎ𝑚
(�̅�ℎ𝑚

𝑖 (𝑡)) ≤ 𝑆ℎ𝑚
(𝛼𝑚(𝑥ℎ𝑚

𝑖 , 𝑡))                         (2.17)    

 

Since the solution of problem (2.5) – (2.7) uniformly converges to the solution of the 

direct problem (2.1) – (2.3), the value of the approximating functional (2.8) converges to the 

value (2.4). Therefore, the following inequalities are also satisfied: 
 

        |𝑆ℎ𝑚
(�̅�ℎ𝑚

𝑖 (𝑡)) − 𝑆 (�̅�ℎ𝑚

𝑖 (𝑥, 𝑡))| < 𝐶ℎ,                 (2.18)      

        |𝑆ℎ𝑚
(𝛼𝑚(𝑥ℎ𝑚

𝑖 , 𝑡)) − 𝑆(𝛼𝑚(𝑥, 𝑡))| < 𝐶ℎ.     (2.19) 

 

        Considering equality  
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𝑆 (𝛼ℎ𝑚
(𝑥, 𝑡)) − 𝑆(𝛼𝑚(𝑥, 𝑡)) =

= 𝑆 (𝛼ℎ𝑚
(𝑥, 𝑡)) − 𝑆ℎ𝑚

(𝛼ℎ𝑚

𝑖 (𝑡)) + 𝑆ℎ𝑚
(�̅�ℎ𝑚

𝑖 (𝑡)) − 𝑆(𝛼𝑚(𝑥, 𝑡)) 

 

the relation (2.17) – (2.19), we have 

        𝑆 (𝛼ℎ𝑚
(𝑥, 𝑡)) ≤ 𝑆(𝛼𝑚(𝑥, 𝑡)) + 2𝐶ℎ                         (2.20) 

 

Since 𝛼𝑚(𝑥, 𝑡) is a minimizing sequence, then from (2.20) it follows that the controls 

�̅�ℎ𝑚
(𝑥, 𝑡) is also a minimizing sequence of controls for (2.4) in problem (2.1) – (2.4), which is 

what should be proved. 

Note that similar results are also valid in the case of the second boundary value problem, 

if within the boundaries of the segment 0 ≤ 𝑥 ≤ 1 values 𝑢𝑥(𝑥, 𝑡) are given. The presented 

scheme remains applicable even in the case when, under the boundary conditions (2.2), at one 

end of the segment 0 ≤ 𝑥 ≤ 1 values of 𝑢(𝑥, 𝑡)are given, and at the other end, values of 

𝑢𝑥(𝑥, 𝑡)are given. 

 

3. Results and discussion 

 

As an example, let us consider the issues of determining the technological mode of 

operation of gas wells. Concerning dimensionless quantities, the problem can be formulated as 

follows: to control the bottomhole pressure 𝑝𝑐(𝑡) in a range specified based on technological 

considerations in such a way that the amount of gas extracted from wells deviates minimally 

from its planned value 𝑞∗(𝑡). As a measure of such deviation, a quadratic functional is taken 

𝑆 =
1

2
∫ [𝑝𝑥

2(0, 𝑡) − 𝑞∗(𝑡)]2𝑇

0
𝑑𝑡                       (3.1) 

where 𝑝 = 𝑝(𝑥, 𝑡) describes the distribution of gas pressure in the “layer” 0 ≤ 𝑥 ≤ 1,   which 

is a solution to the Leibenson equations [8] 

𝑝𝑡 = 0.5𝑝𝑥𝑥
2                                                            (3.2) 

under the following initial and boundary conditions   

𝑝(𝑥, 0) = 𝑐𝑜𝑛𝑠𝑡 = 1, 0 ≤ 𝑥 ≤ 1,                                     (3.3) 

𝑝(0, 𝑡) = 𝑝𝑐(𝑡), 𝑝𝑥(1, 𝑡) = 0, 𝑡 > 0,                            (3.4)  
 

where conditions (3.3) and the first condition in (3.4) agree, that is, 𝑝𝑐(0) = 1.  

 Condition (3.3) means that at the initial moment, the formation was unperturbed with an 

initial constant pressure. The second condition in (3.4) indicates the impermeability of the 

boundary x = 1 of the formation. It is easy to see that equation (3.2) is obtained from equations 

(2.1) under 𝐹(𝑥, 𝑡, 𝑝, 𝑞, 𝑟, 𝛼) ≡ 𝑝𝑟 + 𝑞.2 

When approximating equation (3.2) by the method of straight lines, the problem was 

reduced to solving a variational problem associated with ordinary differential equations: 

 
𝑑𝑝ℎ

𝑖

𝑑𝑡
=

1

2ℎ2 [(𝑝ℎ
𝑖+1)

2
− 2(𝑝ℎ

𝑖 )
2

+ (𝑝ℎ
𝑖−1)

2
] , 1 ≤ 𝑖 ≤ 𝑁 − 1,   (3.5) 

𝑝ℎ
0 = 𝑝𝑐(𝑡), 𝑝ℎ

𝑁 = 𝑝ℎ
𝑁−1 

 

with initial conditions 

𝑝ℎ
𝑖 (0) = 1,0 ≤ 𝑖 ≤ 𝑁.     (3.6) 

 

We need to select 𝑝𝑐(𝑡) so that the functional 
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𝑆 =
1

2ℎ
∫ [(𝑝ℎ

1(𝑡))2 − (𝑝𝑐(𝑡))2 − ℎ𝑞∗(𝑡)]2𝑇

0
𝑑𝑡   (3.7) 

 

took a minimum value. 

Introducing an additional variable 𝑝ℎ
𝑁+1(𝑡), determined by the ratio 

𝑑𝑝ℎ
𝑖𝑁+1

𝑑𝑡
=

1

2ℎ2
[(𝑝ℎ

1)2 − (𝑝𝑐)2 − ℎ𝑞∗(𝑡)], 𝑝ℎ
𝑁+1(0) = 0,                3.8) 

functional (3.7) can be represented as 

𝑆 = 𝑝ℎ
𝑁+1(𝑇)      (3.9) 

Thus, problem (3.1) – (3.4) is replaced by the approximating system (3.5) – (3.6) and 

terminal functionals (3.9). A numerical solution to this problem using the gradient projection 

method was obtained in [6]. The sequence of controls   𝑝𝑐
𝑘(𝑡),   𝑘 = 0,1, … found in this case 

with increasing number of iterations in a time interval 0 ≤ 𝑡 ≤ 𝑇 approached a given control, 

the optimality of which is known in advance. The value of the functional is equal to ~ 4.8216 ∙
10−6.  

As a result of optimization, we obtained a solution 
 

max |
𝜕𝐻

𝜕𝑞
| ≈ 0,                        (3.10) 

which gives grounds to assume the existence of one locally optimal control, where the Hamilton 

function is approximating the optimal problem. 

Thus, by regulating the bottomhole pressure 𝑝𝑐(𝑡) within certain limits, it is possible to 

maintain conditions in the bottom-hole zone area that determine the technological operating 

mode of gas wells. 

 

4. Conclusion 

 

The research conducted and numerical experiments allow us to draw the following 

conclusions: 

1. Using the known estimate for solutions of a system of linear ordinary differential 

equations, it is proved that the solution of the approximating boundary value problem converges 

uniformly with speed 𝑂(ℎ2) to the solution of the original boundary value problem. 

2. It is established that the convergence of the method of straight lines in the functional 

in the approximating optimal problem takes place. 

3. Depending on the selected class of admissible controls, a constructive scheme for 

building a minimizing sequence is proposed. 
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