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Abstract 

This study investigates the Tangram puzzle game as a frame work for examining depth 
perception and motor learning within the field of Human-Computer Interaction (HCI). 
Tangram, a traditional puzzle made up of geometric shapes, provides an engaging and adaptable 
platform to explore how interactive tasks foster cognitive and motor development. The research 
focuses on three objectives: first, to assess depth perception by analyzing how players 
manipulate two-dimensional (2D) shapes to construct perceptual representations of three 
dimensional (3D) structures, thereby enhancing spatial cognition; second, to demonstrate the 
suitability of Tangram as a lightweight and flexible experimental tool for systematically 
measuring user interaction; and third, to examine motor learning processes through the repeated 
manipulation of puzzle pieces, offering insights into the refinement of fine motor skills and 
hand–eye coordination. By embedding Tangram gameplay into a structured experimental 
design, this work contributes to HCI scholarship by highlighting the value of puzzle-based 
interaction in understanding cognitive processes, informing interface design, and advancing 
interactive systems that support learning, rehabilitation, and skill development. 

Keywords: Depth perception, Motor learning, Hand–eye coordination, Cognitive 
development 

 
1. Introduction 
From a Human-Computer Interaction (HCI) perspective, the analysis of motor learning 

and depth perception is reframed by focusing on how users interface with interactive systems 
and tangible tools to develop spatial abilities and movement proficiency. 

Motor learning, within the HCI domain, refers to the iterative process by which users 
acquire and refine movement coordination through their engagement with interactive platforms, 
tools, or environments. This learning is shaped by feedback, user interface capabilities, and the 
multimodal sensory input HCI systems can provide. Critically, HCI draws attention not only to 
the development of physical skills but also to the underlying cognitive processes that are 
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recruited during interaction, such as attention management, spatial reasoning, and strategic 
problem solving. 

Depth perception, in HCI, is conceptualized as the ability of users to effectively interpret 
and operate within 3D or spatially complex digital and physical environments. Whether 
manipulating virtual objects, navigating a 3D interface, or solving spatial puzzles, the user’s 
ability to make accurate spatial judgments is a core concern of usability. 

The Tangram puzzle, as utilized in this study, serves as an experimental HCI platform 
uniquely suited to explore the integration of perception, cognition, and motor activity. The 
players interact with seven geometric pieces, rotating and positioning them on a physical or 
digital surface. This activity involves simultaneous visual feedback, spatial reasoning, and 
mirroring real-world HCI scenarios where users interact with tangible objects, touchscreens, or 
augmented reality systems. 

By requiring users to construct target shapes from 2D elements, Tangram puzzles foster 
spatial thinking, adaptive problem solving, and the translation of cognitive plans into 
coordinated actions. The research aims to reveal how this tangible, feedback-rich interaction 
accelerates motor learning and sharpens depth perception, insights that contribute to the user-
centered design of interactive technologies. From this point of view, Tangram is more than a 
playful activity since it is both a medium for experiential learning and a testbed to evaluate how 
design elements, feedback mechanisms, and task constraints support the development of spatial 
and motor competencies. 

Under the umbrella of these facts, this research pursues three core objectives. First, it 
investigates how users engage with Tangram puzzles to understand and enhance depth 
perception, specifically by analyzing the ways participants manipulate 2D pieces to form 
perceptual models of 3D structures, thereby supporting spatial cognitive development. Second, 
the study demonstrates the value of Tangram as a lightweight and versatile experimental tool, 
capable of systematically capturing user interaction data and behavioral patterns within HCI 
research contexts. Third, it explores motor learning by examining how repeated manipulation 
of puzzle pieces drives the refinement of fine motor skills and hand–eye coordination over time. 

By embedding Tangram gameplay within a structured experimental protocol, this 
research makes a distinct contribution to HCI by showcasing the unique potential of puzzle-
based activities for probing the cognitive and perceptual dimensions of human interaction. The 
study findings inform best practices in interface design and provide evidence for the effective 
use of interactive and embodied tasks in the promotion of learning, rehabilitation, and 
acquisition of emerging skills within digital and physical environments. 

The rest of the paper is structured as follows. Section 2 presents the related works. The 
problem statement and main content are discussed in Section 3. Section 4 introduces the results 
and discussions. The study’s conclusions are presented in Section 5. 

2. Related Works 
To structure the review, we categorize prior research into three interrelated themes: 

studies focusing on depth perception, works addressing motor learning and hand-eye 
coordination, and investigations highlighting educational applications. This organization allows 
us to synthesize findings across different domains while directly linking them to our research 
objectives. 

2.1. Depth Perception 
In this subsection, we review prior studies that investigated the links between tangram 

gameplay, depth perception, and motor learning, highlighting how these interactive tasks 
contribute to visuospatial reasoning and cognitive development. Ayaz et al. [1] examined 
cortical activation during computerized tangram problem solving using Functional Near-
Infrared Spectroscopy (fNIRS). Their findings revealed increased right prefrontal activation 
during tangram tasks compared to control conditions, with greater hemodynamic responses 
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observed in unsuccessful trials. These results indicate that tangram puzzles demand significant 
executive planning and visuospatial reasoning, while also highlighting the utility of fNIRS as a 
portable tool for monitoring cognitive workload in educational contexts. This study provides a 
neurophysiological basis for linking tangram gameplay with cognitive development, aligning 
closely with our focus on depth perception and motor learning. 

Li et al. [2] investigated the effects of stereoscopic 3D video game play on depth 
perception in young adults with normal vision. After forty hours of gameplay, participants 
showed a significant improvement in stereoacuity (i.e., the precision of depth judgments), while 
stereo bias (accuracy) remained unchanged. The findings suggest that immersive 3D 
environments enhance the precision of stereopsis without necessarily reducing depth bias, 
highlighting the potential of stereoscopic games as a training tool for binocular vision and fine 
visuomotor coordination. This study provides empirical evidence linking interactive gameplay 
to depth perception enhancement, which is directly relevant to our investigation of how 
structured puzzle tasks such as tangrams foster spatial awareness and cognitive development. 

A significant study addresses the role of depth perception in motor skill development, 
highlighting how depth perception helps execute motor movements. The study highlights the 
importance of visual processing in guiding physical actions [3]. Another study examined depth 
perception in 3D video technology, introducing the concept of Just Noticeable Difference 
(JND) in depth perception. The study assessed how users perceive small differences in depth. 
Additionally, the study provides insights into how depth perception impacts visual experiences. 
Although this study focuses on 3D video technology, its findings are highly relevant to the 
game Tangram, in which players must evaluate spatial relationships and depth while arranging 
pieces in 2D to create 3D objects [4]. 

Recent research [5] titled “Measuring 3D Video Quality of Experience (QoE) Using a 
Hybrid Metric Based on Spatial Resolution and Depth Cues”, introduced a hybrid 3D-video 
QoE evaluation method that models the human visual system (HVS) through depth-related 
parameters such as motion information, blurriness, retinal-image size, and convergence. Their 
study demonstrated that subjective quality assessments, though accurate, are costly and time-
consuming, highlighting the need for objective QoE metrics aligned with human depth 
perception. By integrating spatial resolution and depth cues, the proposed approach achieved a 
high correlation with subjective evaluations, suggesting that depth modeling is a key 
determinant in 3D visual realism. This work provides a strong foundation for understanding 
how the HVS processes depth information and offers a scalable framework for real-time QoE 
estimation, which can also inform educational and interactive 3D applications relying on spatial 
and perceptual feedback. 

A recent study [6] explored how immersive 3D environments and depth cues influence 
perceptual accuracy and user performance in interactive tasks. The authors examined how 
atmospheric perspective and varying viewing angles within a 3D puzzle game affected users’ 
depth perception, motor control, and task completion time on an autostereoscopic display. Their 
findings showed that enhancing depth cues not only improved spatial awareness but also 
activated mirror neuron responses associated with motor learning. These results highlight the 
importance of realistic depth rendering and stereoscopic feedback in promoting perceptual 
engagement in 3D visual tasks. 

Byunn-Rieder investigated the application of autostereograms in video games and 
demonstrated how to create depth illusions without specialized hardware. In addition, Byunn-
Rieder addressed the potential clinical value of autostereogram- based games. Thus, he 
suggested that playing structured games could improve stereopsis and depth perception. [7]. 

Zerebecki conducted a series of experiments on stereoscopic 3D video games to 
investigate how different depth cues affect player immersion, performance, and learning. He 
observed that stereoscopic 3D can increase perceived immersion and provide more natural 
depth cues. However, he also emphasized that it can present challenges, such as increased 
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control complexity and steep learning curves, for players unaccustomed to navigating along the 
depth axis [8]. 

Knill showed that the brain uses depth cues (binocular and monocular) differently. Motor 
control in tasks such as object placement relies more heavily on binocular cues, while 
perceptual judgments use both cues more evenly. This suggests that the brain integrates cues 
differently depending on the task, and that binocular vision is more important for precise 
movements [9]. 

Volcic and colleagues showed that visuomotor adaptation affects not only depth 
perception but also tactile sensitivity. After participants adapted to the hand-reaching 
movement with modified visual feedback, their depth perception adjusted to this new distance, 
and tactile sensitivity in their forearms increased. This suggests that depth perception is 
continuously adjusted with movement experience and body representation [10]. 

Hoffman compared depth perception in Virtual Reality (VR) with monocular and 
binocular displays. The results showed that the stereoscopic display increased both accuracy 
and engagement in interactive tasks, while the monoscopic display led to an underestimation of 
depth. This study demonstrates that display format influences depth perception and 
performance, and that binocular vision is important for learning [11]. 

2.2. Motor Learning and Hand-Eye Coordination 
In this subsection, we review prior studies that investigated motor learning and hand-eye 

coordination in relation to stereoscopic depth and immersive virtual environments. These works 
collectively emphasize how visuomotor performance is shaped by depth cues and perceptual 
processing demands, while also providing insights into age-related differences and the unique 
characteristics of VR-based interactions. 

Kim et al. [12] examined how stereoscopic 3D objects influence motor control during 
reaching tasks in virtual reality, with a particular focus on age-related differences. Fourteen 
young and 23 older adults made reaching movements towards both 2D and 3D targets at varying 
distances. The results showed that older adults exhibited significantly higher endpoint errors 
and reduced smoothness in the 3D long-distance condition, indicating difficulties in predictive 
motor control. In contrast, younger participants demonstrated sensitivity to stereoscopic signals 
only in long-distance tasks. These findings highlight that stereoscopic depth information 
increases cognitive and motor demands, with effects modulated by age-related changes in 
visuomotor integration. The study underscores the importance of considering stereoscopic 
depth in VR-based motor learning and rehabilitation contexts. 

Juliano et al. [13] investigated how visual information for action is processed in 
Immersive VR (HMD-VR) when interacting with 3D objects. Using a Garner interference task, 
they found that grasping virtual 3D objects produced interference effects in reaction times, 
indicating that actions in VR rely on holistic rather than purely analytical processing. This 
suggests that motor actions in VR environments are more susceptible to perceptual influences 
compared to real-world interactions, which are typically guided by analytical processing. These 
findings highlight critical differences between virtual and real-world visuomotor control, 
raising important implications for the design of VR-based motor learning and rehabilitation 
systems. 

Recent advances in computer vision–driven robotics have emphasized learning- based 
approaches for hand-eye coordination and motor control. Xiao et al. [14] proposed Masked 
Visual Pre-training (MVP), which leverages self-supervised representation learning from real-
world images to improve motor control from pixels. Their results showed that pre-trained visual 
encoders can generalize across different robotic tasks and even approach oracle-level 
performance, highlighting the power of large-scale visual pre-training for visuomotor learning. 

Jin et al. [15] introduced a method for robot eye-hand coordination by watch- ing human 
demonstrations, where a task function is learned directly from raw video sequences using 
inverse reinforcement learning. The learned reward model is then integrated into an 
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uncalibrated visual servoing controller, enabling generalization to changes in targets, 
illumination, and occlusion while reducing hardware wear-out. 

Huang et al. [16] developed Eye-on-Hand Reinforcement Learner (EARL), which 
combines active pose tracking and reinforcement learning to enable dynamic grasping of 
moving objects. Unlike static workspace approaches, EARL utilizes a wrist-mounted RGB-D 
camera for continuous 6-DoF object tracking and grasp planning, demonstrating robustness 
across multiple robotic arms in complex real-world tasks. 

Wang et al. [17] proposed Hand-eye Action Networks (HAN), a novel framework that 
enables robots to generalize visuomotor skills from demonstrations by approximating human-
like hand–eye coordination. Their method integrates 3D visual attention, attention switching, 
and constrained action targets to mimic how humans dynamically shift visual focus and guide 
hand movements during sequential tasks. Experiments across grasping, stacking, and tool-use 
scenarios demonstrated that HAN achieved strong zero-shot generalization to unseen spatial 
configurations, highlighting the importance of spatial invariance and attention coupling in 
motor learning. This approach underscores the role of coordinated perception and action in 
improving adaptability, which is consistent with the findings on cognitive motor training in 
both robotics and human motor development. 

Sailer et al. examined eye movements and hand-eye coordination in a novel task 
requiring bimanual cursor control. They found three stages in the learning process: first tracking 
the cursor, then predicting where the cursor would go, and finally focusing directly on the target. 
This suggests that motor learning involves readjusting eye-hand coordination over time [18]. 

Zhou and Segawa proposed an EMS-based training system to improve hand- eye 
coordination in games. Sixteen participants trained playing games with and without EMS. The 
results showed that EMS improved attention, accuracy, and learning retention more than the 
traditional method. This suggests that EMS is effective in accelerating motor learning and 
maintaining hand-eye coordination [19]. 

2.3. Educational Applications 
In addition to perceptual and motor aspects, previous research has also emphasized 

educational and therapeutic applications of tangram puzzles, demonstrating their value in 
supporting cognitive development, social interaction, and rehabilitation. 

Bernardo et al. [20] explored the therapeutic use of tangram puzzles in children with 
Autism Spectrum Disorder (ASD) by integrating a humanoid robot (NAO) as a tutor or a peer 
during the game. The study showed that in Tutor Mode, the robot effectively supported 
attention and guided children through problem-solving steps, while in Peer Mode, it facilitated 
turn-taking and cooperative play. Results indicated that the interactive tangram system 
enhanced engagement, improved social interaction, and supported motor and cognitive 
development in ASD participants. This work highlights the potential of tangram-based tasks 
not only for visuospatial and motor skill training but also for fostering social and 
communicative abilities in therapeutic contexts. 

Urwyler et al. [21] conducted a pilot randomized controlled crossover trial examining 
the effects of dynamic adaptive casual puzzle games delivered via tablet on cognitive function 
and well-being in healthy middle-aged and older adults. The study included 12 participants, 
with interventions lasting 8 weeks per phase, unsupervised in home settings. Key findings 
showed that engagement with puzzle games led to significant improvements in visual attention 
and visuospatial measures, compared to a control condition (reading newspapers). The authors 
emphasize that algorithm-based dynamic difficulty adaptation accommodated participants with 
different skill levels, and that such digital puzzle interventions are feasible and well tolerated 
in older populations. 

Recent research has highlighted the role of game-based interventions in supporting 
motor and cognitive development. Sabzi [22] demonstrated that structured motor games 
significantly improved fine motor skills such as response speed, visual-motor control, and 
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upper-limb agility in children with Developmental Coordination Disorder (DCD), suggesting 
their potential as effective therapeutic tools for rehabilitation. Complementing this perspective, 
Martinez et al. [23] examined the cognitive implications of both video and board games. Their 
findings revealed that while overall play time was positively associated with multiple cognitive 
abilities, video game practice in particular predicted improvements in mental flexibility, 
visuospatial processing, working memory, and fluid intelligence. In contrast, board game play 
did not significantly contribute to cognitive performance when controlling for age and 
education. Together, these studies underscore the diverse ways in which different types of 
games—ranging from motor-based activities to digital video games—can foster cognitive and 
motor development. 

Recent studies have increasingly emphasized the potential of immersive technologies for 
enhancing spatial abilities. Piri, Kaplan, and Cagiltay [24] developed Holomental, a Mixed 
Reality (MR)-based training system designed to improve mental rotation skills. Their mixed-
method research compared 2-D computer- based and 3-D immersive testing environments, 
demonstrating that the MR condition not only reduced cognitive load but also led to significant 
improvements in participants’ mental rotation performance. Furthermore, gesture-based 
interaction enabled more natural engagement with virtual objects, supporting hand–eye 
coordination, while three-dimensional representations facilitated depth perception. The study 
also highlighted the educational potential of Mixed Reality by showing its effectiveness in 
fostering spatial reasoning, which is essential for STEM-related learning contexts. 

3. Problem Statement and Main Content 
3.1. Experimental Environment and Setup 
The Tangram task was presented through the Unity interface. The experiment was 

conducted at the TED University Lab. Each participant participated in the experiment on a 
Magnetic Wildfire auto-stereoscopic display that can transform content into stereoscopic forms 
without requiring users to wear glasses. The participants were TED University students 
between the ages of 18 and 25. A total of 19 people participated in the experiment. Care was 
taken to minimize ambient noise in the laboratory. Furthermore, to prevent glare on the screen 
in dark mode, no light-emitting devices other than the screen were turned on in the room. To 
ensure consistent task flow and avoid learning bias, all participants completed six sessions in 
total—three in the Bright condition and three in the Dark condition. The order of lighting 
conditions was counterbalanced across participants to minimize order effects. The chosen 
sample size of 19 participants also aligns with the ITU-R BT.500-15 recommendation, which 
specifies that at least 15 subjects are sufficient for subjective visual performance assessments. 

3.2. Task Description 
The Tangram puzzle was chosen for this experiment because it simultaneously exercises 

visual reasoning and motor control. Solving Tangram tasks requires players to mentally rotate 
and align geometric shapes, which directly enhances depth perception by transforming 2D 
pieces into coherent 3D structures. At the same time, physically moving pieces by dragging and 
rotating them provides a suitable environment for studying motor learning and hand-eye 
coordination. This combination makes Tangram an ideal experimental tool for investigating the 
intersection of perceptual and motor processes. Participants recreated the silhouette of a turtle 
using seven geometric shapes. The pieces must be rotated and positioned to fit the given 
silhouette exactly. The puzzle begins with the silhouette placed on the right side of the screen 
and the shapes randomly placed on the left side of the screen. To avoid unnecessary cognitive 
stress during the task, no explicit time limit was imposed, ensuring that performance reflected 
natural motor learning rather than time pressure. Similarly, no corrective feedback was provided 
for incorrect placements in the game. This was intentional to isolate the motor learning process 
that emerges from repeated interaction with the Tangram puzzle. When all pieces were placed 
correctly, the system displayed a success message (See in Figure 1).  
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Figure 3. Tangram Mode2 Configuration         Figure 4. Tangram Mode3 configuration 

• Bright Condition: Mode1 → Mode2 → Mode3 
• Dark Condition: Mode2 → Mode1 → Mode3      
To minimize learning effects, three separate game modes were created. These are called 

Mod1, Mod2, and Mod3 (See in Figure 2, Figure 3 and Figure 4) and differ in the initial 
positions and orientations of the puzzle pieces. The order of the game modes in the dark and 
bright options was set differently to prevent pattern memorization. 

3.3. Data Collection 
The primary performance metric in this study was task completion time, defined as the 

duration (in seconds) between the moment participants initiated the first interaction with a 
Tangram piece and the moment the system detected a correct final configuration. This variable 
reflects both motor efficiency and perceptual processing speed. All timing data were 
automatically recorded by the Unity engine using an internal timer function, ensuring 
millisecond-level precision and eliminating human measurement bias. Each trial was logged 
into the system console immediately upon task completion, including the participant ID, 
lighting condition (Bright or Dark), and game mode. 

The recorded data were subsequently processed to derive individual and group-level 
averages. These metrics were used to evaluate motor learning efficiency and depth perception 
under different lighting conditions. The resulting values were analyzed statistically using a 
paired-samples t -test to compare performance between Bright and Dark conditions, and a two-
way ANOVA to examine the effects of game mode and individual differences on task 
completion time. This approach enabled within-subject comparisons and provided robust 
validation of the observed performance trends. 

3.4. System Implementation 
Tangram game (See in Fig. 5 and Fig. 6) was developed with the Unity game engine 

using the C# scripting language. The application was tested on both macOS and Windows 
platforms. Unity’s 2D physics and event-driven architecture were used for dragging, win 
condition and object interaction. 

Figure 1. Final State after successful 
completion of the Tangram Figure 2. Tangram Mode1 Configuration 
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Figure 5. Tangram as an interactive visual puzzle [25] 

 

 
 

Figure 6. Initial state of the Tangram task showing unplaced pieces and turtle silhouette 
 

Development Overview The game consists of a large number of colored geometric shapes 
(triangles, squares, and parallelograms). The goal is to drag and rotate these shapes to fit the 
turtle silhouette. 
Drag-and-Drop and Rotation Logic A script coded for players to drag and drop geometric 
shapes allows users to: 

• Click and drag a shape using the mouse 
• Rotate the selected shape with mouse scroll wheel 

During dragging, only the selected object responds to input, other shapes are unaffected. 
Win Condition Logic When a shape is dropped, a function is triggered to verify whether the 
puzzle is solved. This logic checks if each shape is within the specified tolerance of its target 
position. An exception is made for the pink and orange triangles, which can be repositioned and 
still be considered correct. 

4. Results and Discussion 
As described in the experimental setup, each participant completed the Tangram puzzle in two 
lighting conditions, both dark and bright, and in three different game modes (i.e., Mode1, 
Mode2, Mode3). The results representing the task completion times for each user in these 
lighting conditions and modes are presented in Table 1. As can be observed from these results 
show that participants generally completed the tasks faster in dark light conditions. Specifically, 
the average completion time for Mode1 decreased from 72.5 seconds in bright light to 40.1 
seconds in dark light. Similarly, the times for Mode2 and Mode3 decreased from 53.7 to 48.5 
seconds and from 51.4 to 43.9 seconds, respectively. 
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User B-Mode1 B-Mode2 B-Mode3 D-Mode1 D-Mode2 D-Mode3 

1 53 34 33 32 35 83 
2 58 63 57 58 53 71 
3 82 65 78 55 50 46 
4 67 46 39 38 42 48 
5 85 85 51 52 42 34 
6 95 43 47 54 35 32 
7 118 61 66 69 53 48 
8 51 65 49 43 29 47 
9 107 53 39 46 33 31 
10 75 51 57 50 44 67 
11 77 48 53 60 34 49 
12 95 63 48 43 46 32 
13 82 68 43 58 29 27 
14 40 32 31 31 35 39 
15 54 40 52 44 38 36 
16 66 34 35 74 45 31 
17 62 52 59 37 44 38 
18 60 76 91 53 50 45 
19 51 39 46 25 25 31 

Average 72.53 53.58 51.26 40.11 48.53 43.95 
Table 1. Task completion times (in seconds) for each user under bright (B) and dark (D) 

conditions across three game modes. 
 
Fig. 7 presents the comparison of average completion times for each game mode under bright 
and dark lighting conditions. The results of the experiment showed that participants improved 
their performance when they moved from bright to dark conditions. This performance increase 
supports the hypothesis that repeated interaction with the game supports motor learning over 
time. 

In addition, the average completion time for Mode 1 under bright conditions (72.5 
seconds) was higher than for Mode 2 (53.7 seconds) and Mode 3 (51.4 seconds) (See in Fig. 7). 
This pattern suggests that the initial exposure to the task demanded greater cognitive and 
attentional resources. Nevertheless, participants demonstrated progressive improvement even 
within the bright condition, indicating that practice contributed to increased efficiency and 
adaptation across subsequent trials. The error bars shown in Fig. 7 also reveal smaller variability 
in the dark condition, suggesting that participants achieved more consistent performance once 
perceptual adaptation occurred. Overall, the bar plot supports the interpretation that both motor 
learning and perceptual familiarity contributed to faster and more stable task execution in later 
modes and darker environments. Participants improved their performance even more when they 
moved to the dark condition, both because they had become accustomed to the game and 
because their depth perception was altered by the dark environment. The findings suggest that 
skills acquired during the initial stage were successfully transferred and applied in subsequent 
stages, reflecting both motor learning and perceptual adaptation. 

The study involved 19 participants who completed tasks under both conditions, 
represented by Bright and Dark. Since each participant experienced both conditions, a paired-
samples t-test was conducted to determine whether there was a significant difference between 
the two conditions (See in table 2. This within-subject comparison allowed direct assessment 
of the effect on performance. The analysis revealed a statistically significant difference between 
Bright Mean (M = 59.12, SD = 12.90) and Dark Mean (M = 44.19, SD = 8.28), t(18) = 5.17, p 
< .001. Participants performed tasks faster in the Dark Mean condition, suggesting that this 
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condition facilitated quicker task completion. These findings indicate that the experimental 
conditions can have a substantial effect on task performance and highlight the importance of 
environmental or contextual factors in cognitive processing. 

 
Figure 7.  Comparison of average task completion times across game modes under light and 

dark conditions, with error bars representing standard deviations. 
 Statistic Bright Mean Dark Mean 

Mean (M) 59.12 44.19 
Variance 166.42 68.58 
Observations (n) 19 19 
Pearson Correlation 0.359 
Hypothesized Mean Difference 0 
Degrees of Freedom (df) 18 
t Statistic 5.17 
Two-tailed p-value 6.38 × 10⁻⁵ 
t Critical (two-tailed) 2.10 

Table 2. Paired-samples t-test statistics for Light Mean and Dark Mean 
 

A two-way analysis of variance (ANOVA) was conducted to investigate the effects of game 
mode (columns) and individual participant differences (rows) on task completion times under 
both bright (light) and dark conditions. The analysis was performed separately for each lighting 
condition to assess whether environmental lighting influenced the variability of performance 
across different game modes. 
For the bright condition (see Table 3), the ANOVA results revealed a significant effect of game 
mode, F(2,36) = 13.27, p < 0.001, indicating that task completion times differed meaningfully 
across the three game modes. Additionally, participant-related differences were also significant, 
F(18,36) = 2.56, p = 0.008, suggesting that individual variability contributed to performance 
outcomes. The error term represents unexplained variance after accounting for these factors. 
In the dark condition (see in Table 3), the effect of game mode was not statistically significant, 
F(2,36) = 2.60, p = 0.088, although it approached trend-level significance, suggesting a possible 
minor influence of mode under low-light conditions. Participant differences were not 
significant in the dark condition, F(18,36)= 1.58, p = 0.118, indicating that individual variability 
was less pronounced compared to the bright condition. 
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Bright Condition 
Source SS df MS F P-value F crit 
Rows 8986.81 18 499.27 2.56 0.00796 1.90 

Columns 5171.09 2 2585.54 13.27 0.000048 3.26 
Error 7012.25 36 194.78 - - - 
Total 21170.14 56 - - - - 

Dark Condition 
Source SS df MS F P-value F crit 
Rows 3703.54 18 205.75 1.58 0.118 1.90 

Columns 675.40 2 337.70 2.60 0.0882 3.26 
Error 4675.93 36 129.89 - - - 
Total 9054.88 56 - - - - 

Table 3. Two-way ANOVA results for task completion times under the Bright and 
Dark conditions. 

 
Overall, these findings suggest that lighting conditions modulate the influence of both task 
difficulty (game mode) and individual differences on performance. These results highlight the 
interaction between environmental lighting and task structure in influencing visual-spatial 
performance, and they underscore the need to consider both task characteristics and individual 
differences when interpreting cognitive and motor task performance. 

5. Conclusion 
Reframed through a HCI lens, this study explored how Tangram gameplay mediates 

motor learning and depth perception in users interacting with complex spatial systems. Results 
indicated progressive improvements in participants’ task performance, attributable to the 
iterative refinement of motor strategies and greater interface fluency gained through continued 
interaction, regardless of variations in environmental lighting. Notably, transitions from bright 
to dark conditions revealed that changes in perceptual cues, as manipulated by the interface 
context, could positively affect users’ depth perception and task efficiency. By systematically 
varying environmental parameters during Tangram play, the study provided a nuanced 
assessment of how interface conditions and embodied interaction jointly shape the processes of 
motor learning and spatial per caption offering actionable insights for the design of adaptive, 
skill-enhancing interactive systems. 
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