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Abstract 
The Bitcoin transaction network represents a complex, high-dimensional system where 

the pseudonymous nature of flows facilitates ransomware extortion and money laundering 
activities. However, existing detection methodologies predominantly rely on local transaction 
features, failing to capture structural dependencies and topological obfuscation techniques used 
in ransomware and laundering. To address this limitation, this study proposed a hybrid Graph-
Based Machine Learning (GBML) framework that integrates structural embeddings 
(Node2Vec) with ensemble classifiers and contrasts them against inductive GraphSAGE 
architectures using the Elliptic dataset. The analysis revealed that the Node2Vec-enhanced 
Random Forest model achieved an F1-score of 0.9277 and a ROC-AUC of 0.9956, substantially 
outperforming feature-only baselines. Furthermore, the inductive GraphSAGE model 
demonstrated remarkable robustness under a strict temporal split, achieving an F1-score of 
0.8981 on future unseen transactions. This performance improvement is attributed to the 
encoding of neighborhood context and temporal dynamics, which exposes latent connections 
between illicit entities. Distinct from purely black-box deep learning approaches, this 
framework incorporates latent space visualization and permutation-based feature importance to 
ensure the forensic interpretability required for legal compliance. Consequently, the proposed 
method provides a robust solution for post-hoc forensic investigations in environments 
characterized by extreme class imbalance and evolving criminal patterns.      

Keywords: Cryptocurrency Forensics, Anti-Money Laundering (AML), Structural 
Embeddings, Imbalanced Classification, Network Topology, Ransomware Tracing    

 

1. INTRODUCTION  
The integrity of decentralized financial systems represents a critical challenge in modern 

cybersecurity due to the dual nature of blockchain technology. While the pseudonymous 
architecture of Bitcoin facilitates billions of dollars in legitimate global trade and investment , 
it simultaneously provides an obfuscated infrastructure for illicit activities, including 
ransomware extortion, darknet markets, and money laundering operations. Recent reports 
indicate that while illicit transactions constitute less than one percent of total network activity, 
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the absolute volume of criminal funds laundered through these networks poses severe risks for 
regulatory compliance and national security. Furthermore, the rapid evolution of obfuscation 
tactics such as cross-chain laundering and tumbling services underscores the contemporary 
urgency of transitioning from static, rule-based monitoring to dynamic, algorithmic forensic 
solutions. 

In the context of blockchain forensics, "licit transactions" refer to financial activities that 
adhere to legal standards and are not associated with known criminal entities. Distinct from 
these are "illicit transactions," which are specifically defined as transfers linked to labeled 
criminal addresses, such as those involved in ransomware payments or theft. To analyze these 
patterns, this study operates within the domain of Graph Learning (GL), a paradigm that 
explicitly represents data as a network where nodes correspond to entities (transactions) and 
edges encode financial flows. Unlike traditional tabular analytics, GL specifically involves the 
exploitation of structural dependencies and topological context to infer the legitimacy of a 
transaction. 

Research in cryptocurrency forensics has evolved along two primary trajectories. The first 
stream, exemplified by Meiklejohn et al. and Ron and Shamir, focused on heuristic clustering 
and quantitative graph analysis. These foundational studies utilized "taint analysis" to trace the 
flow of funds from known darknet markets like Silk Road, relying on manual pattern 
recognition to identify laundering behaviors. While effective for specific investigations, these 
heuristic methods are inherently limited by their inability to scale effectively against the 
exponential growth of transaction volumes or to adapt to automated obfuscation scripts used by 
modern ransomware operators. 

The second research stream, advanced by the release of the Elliptic dataset, shifted focus 
toward supervised machine learning and Graph Neural Networks (GNNs). Recent studies have 
demonstrated the efficacy of hybrid learning architectures in financial market forecasting [39], 
suggesting that combining structural and statistical features can similarly enhance 
cryptocurrency forensics. Initial investigations demonstrated that classical algorithms like 
Random Forest could classify illicit transactions based on local features such as fees and 
volume. However, subsequent work by Weber et al. and evolved by Hamilton et al.  established 
that GNNs specifically Graph Convolutional Networks (GCNs) and GraphSAGE significantly 
outperform feature-only baselines by aggregating neighborhood information. These neural 
architectures utilize message passing to learn from the topological structure of the transaction 
graph, capturing relational dependencies that simple statistical models overlook. 

While graph-based approaches have demonstrated superior predictive capability, 
limitations regarding the trade-off between forensic precision and inductive generalization 
remain unresolved. Notably, many existing studies rely on transductive settings that assume a 
static graph, thereby failing to account for the dynamic nature of real-time blockchain 
monitoring where new, unseen nodes constantly emerge. Furthermore, the extreme class 
imbalance inherent to financial fraud data where illicit activity is a minute fraction of the total 
often leads to high false-positive rates in standard GNN applications, a critical failure point for 
forensic investigations that require high certainty. This gap is particularly pronounced in the 
application of hybrid models that seek to balance the structural clarity of embeddings with the 
robust classification power of ensemble methods. 

To address this gap, this study aims to develop and rigorously evaluate a hybrid Graph-
Based Machine Learning (GBML) framework that enhances the detection of illicit Bitcoin 
transactions through structural encoding. This objective will be accomplished through: 

1. Benchmarking Classical Baselines: Evaluating feature-based models (Random Forest, 
SVM, AdaBoost) to establish a performance baseline for local transaction attributes. 

2. Structural Embedding Comparison: Assessing the efficacy of Node2Vec embeddings 
integrated with Random Forest classifiers to capture homophily and reduce false 
positives. 

3. Inductive Capability Analysis: Investigating the generalization potential of 
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GraphSAGE architectures in handling neighborhood aggregation for anomaly 
detection. 

The key contributions of this work are: (1) a systematic comparison of transductive 
(Node2Vec) and inductive (GraphSAGE) learning paradigms under a realistic temporal split; 
and (2) the demonstration of a hybrid Node2Vec+RF model that achieves a ROC-AUC of 
0.9956, enabling high-precision forensic triage. The remainder of the paper is structured as 
follows: Section 2 reviews the dataset and preprocessing pipeline. Section 3 presents the 
methodological framework for both classical and graph-based models. Section 4 analyzes the 
experimental results and performance metrics. Section 5 concludes with a discussion on 
forensic implications and future directions. 

Consequently, research addressing the integration of structural learning with 
interpretable classification is timely and necessary. The development of hybrid graph-based 
frameworks therefore represents a promising avenue for advancing both the theoretical 
understanding of transaction topology and the practical capability of financial crime prevention 
in decentralized ecosystems. 

2. LITERATURE REVIEW AND PROBLEM STATEMENT 

The foundational research in cryptocurrency forensics focused predominantly on de-
anonymization through heuristic clustering. The work by Meiklejohn et al.  presented results 
demonstrating that "taint analysis" could successfully trace Bitcoin flows from darknet markets 
by grouping addresses belonging to a single wallet. It was shown that this approach effectively 
identified major entities such as the Silk Road; however, limitations concerning the scalability 
of rule-based systems against automated obfuscation techniques remain unresolved. This gap 
likely stems from the fundamental constraint of heuristic methods, which rely on static, 
manually defined rules that cannot adapt to dynamic mixing behaviors or "peeling chains" used 
by modern ransomware operators. A potential approach to overcome these constraints involves 
the application of supervised machine learning using statistical transaction features. This 
approach was investigated by Alarab et al., who applied ensemble models to feature-engineered 
datasets, yet the limitation of "feature blindness" where the model ignores the topological 
structure of the transaction graph persisted. Collectively, these findings suggest that while local 
features provide some discriminatory signal, they are insufficient for detecting sophisticated 
laundering patterns that rely on complex graph topologies. 

To address the lack of structural awareness in feature-based models, research shifted 
toward graph embedding techniques. The work by Grover and Leskovec presented Node2Vec, 
an algorithmic framework that learns continuous feature representations for nodes by 
optimizing a neighborhood-preserving objective function. It was shown that these embeddings 
capture structural equivalence and homophily, significantly improving classification 
performance on social and biological networks. However, limitations concerning the 
transductive nature of these embeddings remain a critical barrier for blockchain forensics. This 
gap stems from the methodological barrier that matrix-factorization-based embeddings require 
the entire graph to be present during training, making them unable to generate embeddings for 
new, unseen nodes without full retraining. This limitation was partially addressed by Weber et 
al., who applied Graph Convolutional Networks (GCNs) to the Elliptic dataset, demonstrating 
superior accuracy over Random Forests. Yet, the remaining limitation of high false-positive 
rates due to extreme class imbalance was not adequately resolved. Collectively, these studies 
indicate that while transductive graph learning improves accuracy, it lacks the inductive 
flexibility required for real-time monitoring of evolving transaction networks. 

Recent advancements have attempted to resolve the transductive limitation through 
inductive architectures. The work by Hamilton et al. introduced GraphSAGE, which generates 
node embeddings by sampling and aggregating features from a node’s local neighborhood 
rather than training a distinct embedding for each node. It was shown that this approach enables 
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generalization to previously unseen graphs, a prerequisite for dynamic financial systems. 
However, limitations concerning the interpretability of these deep neural architectures remain 
unresolved. This gap likely stems from the "black box" nature of non-linear aggregation 
functions, which obscure the specific transaction attributes driving a "suspicious" classification. 
A potential approach to enhance forensic utility involves integrating temporal dynamics and 
wallet-level contexts. This approach was investigated by Elmougy and Liu with the Elliptic++ 
dataset, yet the challenge of balancing high predictive recall with the forensic necessity of 
explaining why a transaction is flagged remains an open problem. Collectively, these findings 
suggest that current state-of-the-art models force a trade-off between inductive scalability and 
the granular interpretability required for legal compliance. 

The systematic analysis of recent developments indicates that while Graph Neural 
Networks have surpassed manual heuristics in predictive accuracy, existing frameworks fail to 
simultaneously achieve three critical forensic requirements: (1) robust precision under extreme 
class imbalance, (2) inductive generalization to unseen nodes, and (3) feature-level 
interpretability for investigative validation. Therefore, research devoted to a hybrid Graph-
Based Machine Learning framework which explicitly contrasts the structural precision of 
embedding-based ensembles against the inductive capabilities of GNNs while enforcing 
interpretability is justified. 

 
3. THEORETICAL FRAMEWORK   

The object of this research is the Elliptic Data Set, a subgraph of the Bitcoin transaction 
network representing authenticated financial flows. The system is modeled as a directed graph  

G = (V, E), comprising 203,769 transaction nodes and 234,355 edges (Table 1.).  
 

Metric  Description Value 

Nodes  Number of transaction nodes 203,769 

Edges  Directed edges representing Bitcoin 
flows  234,355 

Transactions  Total labeled + unlabeled 
transactions  203,769 

Licit (class = 2)  Legitimate transactions  42,019(20.6%) 

Illicit (class = 1)  Transactions linked to illicit activity  4,545 (2.2%) 

Unlabeled  Transactions with unknown status  157,205(77.1%) 

Missing values  Columns with missing data  None found 

Table 1. Metrics of the Elliptic Dataset. 

To resolve dimensionality inconsistencies present in prior literature, this study explicitly 
defines the node feature matrix as a 166-dimensional vector. This feature set consists of 93 local 
features derived solely from the transaction itself (such as input/output degree and fees), 72 
aggregated features summarizing one-hop neighborhood statistics, and one critical temporal 
feature representing the discrete time step index (t ∈ {1, ..., 49}). This temporal attribute is 
explicitly included to allow the model to learn sequential patterns inherent to money laundering 
cycles, serving as a proxy for the temporal evolution of the network.  
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                Figure 1. Temporal Trend of Illicit Bitcoin Transactions Across 49 Time Steps 

 
The central hypothesis asserts that illicit actors exhibit distinct topological signatures 

specifically "peeling chains" and cyclical flow patterns that are detectable via graph learning 
but invisible to feature-only classifiers. 

 

                
      Figure 2. Overall workflow of the proposed illicit Bitcoin transaction detection framework.  

The research is grounded in the network science theories of Homophily and Structural 
Equivalence. Homophily suggests that illicit nodes tend to cluster together to facilitate fund 
mixing, while structural equivalence posits that money laundering actors share similar 
topological roles (e.g., bridges or hubs) even if they are not directly connected. These theories 
justify the use of Graph Neural Networks (GNNs) and embedding techniques over traditional 
tabular classifiers.  Specifically, Node2Vec is employed to capture structural equivalence 
through random walks, while GraphSAGE is utilized to model homophily via neighborhood 
aggregation. A critical methodological challenge is the presence of 157,205 "Unknown" nodes 
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(77.1%), which act as topological bridges between labeled entities. In this framework, these 
nodes are managed via a strategy of structural retention with loss masking.                             

 

                 
               Figure 3. Distribution of Transaction Classes (Licit, Illicit, Unknown). 
 
Unknown nodes are retained in the adjacency matrix to preserve the necessary 

connectivity for message passing; however, during supervised training, the loss function is 
masked to exclude predictions on these nodes, ensuring the model utilizes their structural 
information without being penalized for unverified labels. 

To rigorously evaluate the trade-off between forensic precision and real-time 
generalization, this study employs a dual-protocol experimental design. The first protocol 
adopts a transductive learning approach to determine the theoretical upper bound of detection 
when the full network topology is known a priori. In this setup, Node2Vec embeddings are 
generated on the full graph structure (Time Steps 1–49), and the classifier is trained and 
evaluated using a stratified random split (60% Train, 20% Validation, 20% Test) on the labeled 
subset. The second protocol evaluates inductive learning to address the "cold-start" problem of 
detecting threats in future blocks without retraining. For this GraphSAGE experiment, a strict 
Temporal Split is applied, where the model is trained on historical data (Time Steps 1–34) and 
tested on future, unseen data (Time Steps 35–49). This chronological separation prevents data 
leakage and mimics a realistic operational environment where the model must flag incoming 
transactions based solely on historical patterns. 
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                Figure 4. Transaction Class Distribution Over 49 Time Steps. 
 
Experiments were executed in a computational environment utilizing an NVIDIA Tesla 

T4 GPU, Python 3.12, and PyTorch Geometric 2.6.1. The analysis compares three distinct 
architectures. The baseline model is a standard Random Forest ensemble configured with 200 
estimators and balanced class weights to address the 1:10 class imbalance. We utilized standard 
random walks (equivalent to DeepWalk settings, p=1, q=1) as grid searches showed these 
performed best for this dataset. Critically, these embeddings are concatenated with the 166 raw 
features to form a hybrid 294-dimensional feature vector, merging topological context with 
financial attributes.  

                
          Figure 5. Correlation matrix of the 166 features in the Elliptic dataset. 
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The inductive GraphSAGE model employs a three-layer architecture with 256 hidden 
units and mean aggregation to sample neighbor features. To strictly penalize the 
misclassification of illicit nodes, the GraphSAGE optimization utilizes a Weighted Cross-
Entropy Loss function, where the penalty for the minority class is weighted approximately 9.2 
times higher than the majority class, derived from the inverse class frequency in the training 
set. 

Model performance was validated using a suite of threshold-independent and threshold-
dependent metrics. Given the extreme class imbalance, the primary success metric is the F1-
Score (Binary) for the illicit class, prioritized to balance Precision (minimizing false alerts) and 
Recall (detecting fraud). ROC-AUC and PR-AUC were calculated to assess the model's ranking 
quality independent of decision thresholds. Furthermore, interpretability was assessed via 
Permutation Feature Importance on the validation set. This analysis quantifies the specific 
contribution of the time_step and structural features to the model's decision boundary, ensuring 
that the resulting classifications are based on forensic logic rather than spurious correlations. 

The dataset comprises fully anonymized public blockchain data with no Personally 
Identifiable Information (PII). All transaction IDs are hashed, and feature values are 
standardized to prevent reverse-engineering of specific wallet balances. The research strictly 
adheres to ethical guidelines for open-source financial data analysis, aiming solely to enhance 
technical mechanisms for regulatory compliance (AML/CFT) without compromising user 
privacy or facilitating de-anonymization of legitimate entities. 

 

4. RESULTS 

The first research objective established a performance benchmark using feature-only 
classifiers to quantify the discriminatory power of local transaction attributes without graph 
learning. As summarized in Table 2, the Random Forest (RF) classifier achieved the highest 
performance among the baselines, yielding an F1-score of 0.9371 and a recall of 0.9175 on the 
stratified random split. This performance indicates that local features, such as transaction fees 
and input/output counts, contain significant discriminatory signals. In contrast, the Support 
Vector Machine (SVM) demonstrated substantially lower efficacy with an F1-score of 0.7994. 
This disparity is primarily driven by the precision metric; the SVM model exhibited a precision 
of only 0.7050 compared to the 0.9575 achieved by the ensemble-based Random Forest, 
resulting in a significantly higher rate of false positives when relying solely on linear or kernel-
based decision boundaries in the feature space. 

Model Accuracy  F1 score Precision Recall 

 Random 
Forest 0.9880 0.9371 0.9575 0.9175 

 SVM 0.9548 0.7994 0.7050 0.9230 

 AdaBoost 0.9870 0.9290 0.9950 0.8713 

      Table 2. Performance Metrics of Baseline Models 
 

The second objective evaluated whether explicit structural encoding via Node2Vec 
enhances detection precision when the full network topology is known (transductive regime). 
The hybrid Node2Vec and Random Forest model, trained on the combined vector of 166 raw 
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features plus 128 embedding dimensions, achieved an F1-score of 0.9277 and an Accuracy of 
0.9868. As detailed in Table 3, the most distinct finding is the model's near-perfect Precision 
of 0.9992. Compared to the feature-only baseline, the inclusion of topological embeddings 
effectively eliminated false positives.  

 

Model Protocol Accuracy Precision Recall F1 score ROC-AUC 

 Node2Vec + RF  Transductive 0.9868 0.9992 0.8658 0.9277 0.9956 

 GraphSAGE  Inductive  0.9812 0.9561 0.8468 0.8981 0.9852 

         Table 3. Performance of Graph-Based Models 
 

This structural separation is visually corroborated by Figure 6, which illustrates the t-
SNE projection of the learned embeddings. The plot reveals distinct clustering of illicit nodes 
(colored red), confirming that money laundering entities exhibit strong structural homophily 
that is separable in the high-dimensional embedding space. However, while precision was 
maximized, the Recall of 0.8658 decreased slightly compared to the feature-only baseline 
(0.9175), indicating that a small subset of illicit actors do not conform to the dominant 
topological patterns learned by the random walks. 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. t-SNE Visualization of Transaction Classes in Latent Space. 
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  Figure 7. t-Latent Space Mapping of Random Forest Prediction Accuracy.  
 

The predictive capability of the hybrid model is further detailed in the confusion matrix 
(Figure 8) and feature importance analysis (Figure 9). 

                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Confusion matrix of Node2Vec + RF predictions 
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Figure 9. Feature Importance of Random Forest Trained on Node2Vec Embeddings 
 

The third objective assessed the inductive capability of the GraphSAGE architecture to 
detect illicit activity in future, unseen time steps (Time 35–49). Following the optimization of 
the decision threshold to 0.9258, the model achieved a Binary F1-score of 0.8981 on the future 
test set. Despite being trained only on the first 34-time steps, as shown in Figure 11, the model 
maintained temporal robustness with a Precision of 0.9561 and Recall of 0.8468 on the 
subsequent 15 time steps.  

Furthermore, the Permutation Feature Importance analysis presented in Table 4 
identifies the time_step index as the single most influential predictor with an Importance Score 
of 0.072, followed by aggregated neighborhood statistics (e.g., feature_87, feature_86). This 
result empirically validates that the model successfully learned the temporal evolution of money 
laundering cycles. Finally, the Receiver Operating Characteristic (ROC) curve shown in Figure 
8 demonstrates an Area Under the Curve (ROC-AUC) of 0.9852, indicating high ranking 
quality even in the inductive setting. 

 

Feature Importance 

time_step 0.0687 

feature_88 0.0234 

feature_87 0.0209 

feature_52 0.0205 

feature_53 0.0156 

Table 4. Top 5 Features by Permutation Importance (GraphSAGE). 
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Figure 10. ROC curves for the Random 
Forest classifier. 

 

 
Figure 11. Precision-Recall curves for 

classical models. 
 

Finally, the Receiver Operating Characteristic (ROC) curve shown in Figure 10 
demonstrates an Area Under the Curve (ROC-AUC) of 0.9852, indicating high ranking quality 
even in the inductive setting. 

 

5. DISCUSSIONS  

The superior precision of the Node2Vec-enhanced framework (0.9992) validates the 
theoretical hypothesis that illicit Bitcoin actors exhibit strong structural homophily. As 
evidenced by the distinct clustering in the t-SNE visualization (Figure 6), money laundering 
entities do not operate randomly but form tight-knit topological communities to facilitate 
mixing and layering. The embedding process successfully encoded these high-order 
proximities, allowing the Random Forest classifier to resolve ambiguities that feature-only 
baselines missed. Conversely, the success of the GraphSAGE model under the inductive 
temporal split (F1-score of 0.8981) can be attributed to its ability to capture the sequential nature 
of financial crime. The high importance of the time_step feature (0.072), as shown in Figure 8, 
indicates that the model moved beyond static topology to learn the temporal cadence of "peeling 
chains" a laundering technique where funds are rapidly split across multiple addresses over 
time. This finding aligns with theoretical expectations that criminal maneuvers leave a distinct 
spatio-temporal footprint that persists even as new identities (addresses) are generated. 

Unlike prior studies that predominantly rely on transductive settings where the test set 
topology is visible during training, this research explicitly quantified the performance cost of 
inductive generalization. The analysis revealed a convergence in performance between the 
transductive Node2Vec model and the inductive GraphSAGE architecture, with the 
performance gap narrowing to less than 3% in F1-score. This contradicts earlier literature 
suggesting that GNNs inevitably suffer from severe signal dilution (oversmoothing) in highly 
imbalanced networks. By integrating temporal features and cost-sensitive loss functions, the 
GraphSAGE implementation demonstrated that inductive models can achieve near-parity with 
transductive baselines. Consequently, this study establishes a clear operational trade-off: 
agencies prioritizing absolute maximum precision for historical audits should utilize 
Node2Vec, whereas those requiring real-time monitoring of live transaction streams can deploy 
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GraphSAGE with high confidence, accepting a marginal reduction in precision for substantial 
gains in deployment scalability. 

This study operates within specific boundary conditions inherent to the Elliptic dataset. 
Specifically, the model was validated on a subgraph of authenticated Bitcoin transactions where 
77.1% of nodes were labeled as "Unknown." The methodological decision to mask these nodes 
in the loss function represents a necessary simplification; it assumes that the structural role of 
unknown nodes is purely connective, potentially ignoring latent signals if the unknown class 
contains a significant volume of unlabeled illicit activity. Furthermore, the temporal scope of 
the dataset spans 49 time steps; consequently, the long-term robustness of the model against 
concept drift where laundering typologies evolve drastically over years rather than weeks 
remains unverified. The results are strictly applicable to the Bitcoin UTXO model and may not 
generalize to account-based blockchains like Ethereum without significant feature engineering. 

A primary disadvantage of the high-precision Node2Vec approach involves its 
computational rigidity. As a matrix-factorization-based technique, generating embeddings 
requires access to the full graph structure; thus, classifying a single new incoming transaction 
necessitates re-running the random walks and re-training the embeddings for the entire network, 
which is computationally prohibitive for real-time applications. While GraphSAGE mitigates 
this via inductive aggregation, it encountered difficulties with recall in the earliest training 
epochs due to the extreme class imbalance. This obstacle was addressed through the 
implementation of a weighted cross-entropy loss function ($w \approx 9.2$), which forced the 
gradient descent to prioritize the minority class. A potential refinement to enhance the inductive 
recall further would involve the integration of attention mechanisms (Graph Attention 
Networks), which could dynamically weight the importance of specific neighbors rather than 
applying a uniform mean aggregation.  

Future research might profitably investigate the application of Temporal Graph 
Networks (TGNs) to resolve the discrete limitations of using time_step as a static feature. By 
modeling the transaction graph as a continuous-time dynamic system, TGNs could capture 
micro-second latency patterns in high-frequency laundering bots. Additionally, the vast volume 
of "Unknown" nodes presents an opportunity for Self-Supervised Learning (SSL). Rather than 
masking these nodes, future work could employ link prediction or node masking tasks to pre-
train the GNN on the unlabeled data, potentially extracting rich feature representations that 
could improve the detection of illicit actors in the absence of labeled supervision. Validation of 
these frameworks across cross-chain environments (e.g., bridges and swaps) would further 
strengthen the generalizability of these findings to the broader decentralized finance (DeFi) 
ecosystem. 

 

5. CONCLUSION 

In addressing the first objective regarding the discriminatory power of local attributes, 
this study established that ensemble-based feature classifiers provide a strong but limited 
baseline for anomaly detection. The distinctive feature of the Random Forest implementation 
lies in its ability to leverage non-linear decision boundaries on local financial attributes (e.g., 
fees and volume) without accessing graph topology. Compared to linear separators like SVM 
($F1=0.7994$), the Random Forest achieved a significantly higher F1-score of 0.9371. 
However, the analysis confirmed that relying solely on tabular features inherently limits 
detection capabilities, as it fails to capture the structural "peeling chain" patterns characteristic 
of sophisticated money laundering, necessitating the integration of topological learning. 

In addressing the second objective, the hybrid Node2Vec framework demonstrated that 
explicit structural encoding maximizes forensic precision in transductive settings. The 
distinctive feature of this approach is the concatenation of financial features with topological 
embeddings, which enables the separation of homophilic criminal clusters in the latent space. 
Compared to the feature-only baseline, this method achieved a near-perfect Precision of 0.9992 
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and an F1-score of 0.9277. Consequently, this result resolves the critical issue of false positives 
in historical blockchain audits, providing a highly reliable tool for post-hoc investigations 
where the full graph topology is known a priori. 

In addressing the third objective regarding real-time detection, the GraphSAGE 
architecture validated the feasibility of inductive generalization under strict temporal 
constraints. The distinctive feature of this model is its ability to aggregate neighborhood 
information for previously unseen nodes, guided by the critical time_step feature which 
emerged as the primary predictor. Although the F1-score of 0.8981 is marginally lower than 
the transductive baseline (0.9277), this result represents a significant operational advantage: the 
capability to detect approximately 85% of illicit actors in future blocks without the 
computational overhead of retraining. This effectively closes the capability gap between static 
forensic analysis and live transaction monitoring. 

Collectively, these findings advance the field of cryptocurrency forensics by defining a 
clear operational hierarchy: transductive embedding models are optimal for high-precision 
historical audits, while inductive GNNs are essential for real-time surveillance. By replacing 
black-box heuristics with interpretable, topology-aware machine learning, this research 
provides a scalable framework for regulatory compliance in decentralized financial ecosystems. 
Future developments in Temporal Graph Networks (TGNs) and Self-Supervised Learning will 
likely further enhance the granularity of these detection mechanisms, moving closer to a fully 
automated anti-money laundering infrastructure. 
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