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Abstract

The Bitcoin transaction network represents a complex, high-dimensional system where
the pseudonymous nature of flows facilitates ransomware extortion and money laundering
activities. However, existing detection methodologies predominantly rely on local transaction
features, failing to capture structural dependencies and topological obfuscation techniques used
in ransomware and laundering. To address this limitation, this study proposed a hybrid Graph-
Based Machine Learning (GBML) framework that integrates structural embeddings
(Node2Vec) with ensemble classifiers and contrasts them against inductive GraphSAGE
architectures using the Elliptic dataset. The analysis revealed that the Node2Vec-enhanced
Random Forest model achieved an F1-score 0f 0.9277 and a ROC-AUC of 0.9956, substantially
outperforming feature-only baselines. Furthermore, the inductive GraphSAGE model
demonstrated remarkable robustness under a strict temporal split, achieving an Fl-score of
0.8981 on future unseen transactions. This performance improvement is attributed to the
encoding of neighborhood context and temporal dynamics, which exposes latent connections
between illicit entities. Distinct from purely black-box deep learning approaches, this
framework incorporates latent space visualization and permutation-based feature importance to
ensure the forensic interpretability required for legal compliance. Consequently, the proposed
method provides a robust solution for post-hoc forensic investigations in environments
characterized by extreme class imbalance and evolving criminal patterns.
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1.INTRODUCTION

The integrity of decentralized financial systems represents a critical challenge in modern
cybersecurity due to the dual nature of blockchain technology. While the pseudonymous
architecture of Bitcoin facilitates billions of dollars in legitimate global trade and investment ,
it simultaneously provides an obfuscated infrastructure for illicit activities, including
ransomware extortion, darknet markets, and money laundering operations. Recent reports

indicate that while illicit transactions constitute less than one percent of total network activity,
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the absolute volume of criminal funds laundered through these networks poses severe risks for
regulatory compliance and national security. Furthermore, the rapid evolution of obfuscation
tactics such as cross-chain laundering and tumbling services underscores the contemporary
urgency of transitioning from static, rule-based monitoring to dynamic, algorithmic forensic
solutions.

In the context of blockchain forensics, "licit transactions" refer to financial activities that
adhere to legal standards and are not associated with known criminal entities. Distinct from
these are "illicit transactions," which are specifically defined as transfers linked to labeled
criminal addresses, such as those involved in ransomware payments or theft. To analyze these
patterns, this study operates within the domain of Graph Learning (GL), a paradigm that
explicitly represents data as a network where nodes correspond to entities (transactions) and
edges encode financial flows. Unlike traditional tabular analytics, GL specifically involves the
exploitation of structural dependencies and topological context to infer the legitimacy of a
transaction.

Research in cryptocurrency forensics has evolved along two primary trajectories. The first
stream, exemplified by Meiklejohn et al. and Ron and Shamir, focused on heuristic clustering
and quantitative graph analysis. These foundational studies utilized "taint analysis" to trace the
flow of funds from known darknet markets like Silk Road, relying on manual pattern
recognition to identify laundering behaviors. While effective for specific investigations, these
heuristic methods are inherently limited by their inability to scale effectively against the
exponential growth of transaction volumes or to adapt to automated obfuscation scripts used by
modern ransomware operators.

The second research stream, advanced by the release of the Elliptic dataset, shifted focus
toward supervised machine learning and Graph Neural Networks (GNNs). Recent studies have
demonstrated the efficacy of hybrid learning architectures in financial market forecasting [39],
suggesting that combining structural and statistical features can similarly enhance
cryptocurrency forensics. Initial investigations demonstrated that classical algorithms like
Random Forest could classify illicit transactions based on local features such as fees and
volume. However, subsequent work by Weber et al. and evolved by Hamilton et al. established
that GNNs specifically Graph Convolutional Networks (GCNs) and GraphSAGE significantly
outperform feature-only baselines by aggregating neighborhood information. These neural
architectures utilize message passing to learn from the topological structure of the transaction
graph, capturing relational dependencies that simple statistical models overlook.

While graph-based approaches have demonstrated superior predictive capability,
limitations regarding the trade-off between forensic precision and inductive generalization
remain unresolved. Notably, many existing studies rely on transductive settings that assume a
static graph, thereby failing to account for the dynamic nature of real-time blockchain
monitoring where new, unseen nodes constantly emerge. Furthermore, the extreme class
imbalance inherent to financial fraud data where illicit activity is a minute fraction of the total
often leads to high false-positive rates in standard GNN applications, a critical failure point for
forensic investigations that require high certainty. This gap is particularly pronounced in the
application of hybrid models that seek to balance the structural clarity of embeddings with the
robust classification power of ensemble methods.

To address this gap, this study aims to develop and rigorously evaluate a hybrid Graph-
Based Machine Learning (GBML) framework that enhances the detection of illicit Bitcoin
transactions through structural encoding. This objective will be accomplished through:

1. Benchmarking Classical Baselines: Evaluating feature-based models (Random Forest,
SVM, AdaBoost) to establish a performance baseline for local transaction attributes.

2. Structural Embedding Comparison: Assessing the efficacy of Node2Vec embeddings
integrated with Random Forest classifiers to capture homophily and reduce false
positives.

3.Inductive Capability Analysis: Investigating the generalization potential of
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GraphSAGE architectures in handling neighborhood aggregation for anomaly
detection.

The key contributions of this work are: (1) a systematic comparison of transductive
(Node2Vec) and inductive (GraphSAGE) learning paradigms under a realistic temporal split;
and (2) the demonstration of a hybrid Node2Vec+RF model that achieves a ROC-AUC of
0.9956, enabling high-precision forensic triage. The remainder of the paper is structured as
follows: Section 2 reviews the dataset and preprocessing pipeline. Section 3 presents the
methodological framework for both classical and graph-based models. Section 4 analyzes the
experimental results and performance metrics. Section 5 concludes with a discussion on
forensic implications and future directions.

Consequently, research addressing the integration of structural learning with
interpretable classification is timely and necessary. The development of hybrid graph-based
frameworks therefore represents a promising avenue for advancing both the theoretical
understanding of transaction topology and the practical capability of financial crime prevention
in decentralized ecosystems.

2. LITERATURE REVIEW AND PROBLEM STATEMENT

The foundational research in cryptocurrency forensics focused predominantly on de-
anonymization through heuristic clustering. The work by Meiklejohn et al. presented results
demonstrating that "taint analysis" could successfully trace Bitcoin flows from darknet markets
by grouping addresses belonging to a single wallet. It was shown that this approach effectively
identified major entities such as the Silk Road; however, limitations concerning the scalability
of rule-based systems against automated obfuscation techniques remain unresolved. This gap
likely stems from the fundamental constraint of heuristic methods, which rely on static,
manually defined rules that cannot adapt to dynamic mixing behaviors or "peeling chains" used
by modern ransomware operators. A potential approach to overcome these constraints involves
the application of supervised machine learning using statistical transaction features. This
approach was investigated by Alarab et al., who applied ensemble models to feature-engineered
datasets, yet the limitation of "feature blindness" where the model ignores the topological
structure of the transaction graph persisted. Collectively, these findings suggest that while local
features provide some discriminatory signal, they are insufficient for detecting sophisticated
laundering patterns that rely on complex graph topologies.

To address the lack of structural awareness in feature-based models, research shifted
toward graph embedding techniques. The work by Grover and Leskovec presented Node2Vec,
an algorithmic framework that learns continuous feature representations for nodes by
optimizing a neighborhood-preserving objective function. It was shown that these embeddings
capture structural equivalence and homophily, significantly improving classification
performance on social and biological networks. However, limitations concerning the
transductive nature of these embeddings remain a critical barrier for blockchain forensics. This
gap stems from the methodological barrier that matrix-factorization-based embeddings require
the entire graph to be present during training, making them unable to generate embeddings for
new, unseen nodes without full retraining. This limitation was partially addressed by Weber et
al., who applied Graph Convolutional Networks (GCNs) to the Elliptic dataset, demonstrating
superior accuracy over Random Forests. Yet, the remaining limitation of high false-positive
rates due to extreme class imbalance was not adequately resolved. Collectively, these studies
indicate that while transductive graph learning improves accuracy, it lacks the inductive
flexibility required for real-time monitoring of evolving transaction networks.

Recent advancements have attempted to resolve the transductive limitation through
inductive architectures. The work by Hamilton et al. introduced GraphSAGE, which generates
node embeddings by sampling and aggregating features from a node’s local neighborhood
rather than training a distinct embedding for each node. It was shown that this approach enables
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generalization to previously unseen graphs, a prerequisite for dynamic financial systems.
However, limitations concerning the interpretability of these deep neural architectures remain
unresolved. This gap likely stems from the "black box" nature of non-linear aggregation
functions, which obscure the specific transaction attributes driving a "suspicious" classification.
A potential approach to enhance forensic utility involves integrating temporal dynamics and
wallet-level contexts. This approach was investigated by Elmougy and Liu with the Elliptic++
dataset, yet the challenge of balancing high predictive recall with the forensic necessity of
explaining why a transaction is flagged remains an open problem. Collectively, these findings
suggest that current state-of-the-art models force a trade-off between inductive scalability and
the granular interpretability required for legal compliance.

The systematic analysis of recent developments indicates that while Graph Neural
Networks have surpassed manual heuristics in predictive accuracy, existing frameworks fail to
simultaneously achieve three critical forensic requirements: (1) robust precision under extreme
class imbalance, (2) inductive generalization to unseen nodes, and (3) feature-level
interpretability for investigative validation. Therefore, research devoted to a hybrid Graph-
Based Machine Learning framework which explicitly contrasts the structural precision of
embedding-based ensembles against the inductive capabilities of GNNs while enforcing
interpretability is justified.

3. THEORETICAL FRAMEWORK

The object of this research is the Elliptic Data Set, a subgraph of the Bitcoin transaction
network representing authenticated financial flows. The system is modeled as a directed graph
G =(V, E), comprising 203,769 transaction nodes and 234,355 edges (Table 1.).

Metric Description Value
Nodes Number of transaction nodes 203,769
Edges Directed edges representing Bitcoin 234355

flows

+

Transactions Total labeled unlabeled 203,769

transactions
Licit (class = 2) Legitimate transactions 42,019(20.6%)
Ilicit (class = 1) Transactions linked to illicit activity 4,545 (2.2%)
Unlabeled Transactions with unknown status 157,205(77.1%)
Missing values Columns with missing data None found

Table 1. Metrics of the Elliptic Dataset.

To resolve dimensionality inconsistencies present in prior literature, this study explicitly
defines the node feature matrix as a 166-dimensional vector. This feature set consists of 93 local
features derived solely from the transaction itself (such as input/output degree and fees), 72
aggregated features summarizing one-hop neighborhood statistics, and one critical temporal
feature representing the discrete time step index (t € {1, ..., 49}). This temporal attribute is
explicitly included to allow the model to learn sequential patterns inherent to money laundering
cycles, serving as a proxy for the temporal evolution of the network.
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Figure 1. Temporal Trend of Illicit Bitcoin Transactions Across 49 Time Steps
The central hypothesis asserts that illicit actors exhibit distinct topological signatures
specifically "peeling chains" and cyclical flow patterns that are detectable via graph learning

but invisible to feature-only classifiers.
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Figure 2. Overall workflow of the proposed illicit Bitcoin transaction detection framework.
The research is grounded in the network science theories of Homophily and Structural
Equivalence. Homophily suggests that illicit nodes tend to cluster together to facilitate fund
mixing, while structural equivalence posits that money laundering actors share similar
topological roles (e.g., bridges or hubs) even if they are not directly connected. These theories
justify the use of Graph Neural Networks (GNNs) and embedding techniques over traditional
tabular classifiers. Specifically, Node2Vec is employed to capture structural equivalence
through random walks, while GraphSAGE is utilized to model homophily via neighborhood
aggregation. A critical methodological challenge is the presence of 157,205 "Unknown" nodes
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(77.1%), which act as topological bridges between labeled entities. In this framework, these
nodes are managed via a strategy of structural retention with loss masking.
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Figure 3. Distribution of Transaction Classes (Licit, Illicit, Unknown).

Unknown nodes are retained in the adjacency matrix to preserve the necessary
connectivity for message passing; however, during supervised training, the loss function is
masked to exclude predictions on these nodes, ensuring the model utilizes their structural
information without being penalized for unverified labels.

To rigorously evaluate the trade-off between forensic precision and real-time
generalization, this study employs a dual-protocol experimental design. The first protocol
adopts a transductive learning approach to determine the theoretical upper bound of detection
when the full network topology is known a priori. In this setup, Node2Vec embeddings are
generated on the full graph structure (Time Steps 1-49), and the classifier is trained and
evaluated using a stratified random split (60% Train, 20% Validation, 20% Test) on the labeled
subset. The second protocol evaluates inductive learning to address the "cold-start" problem of
detecting threats in future blocks without retraining. For this GraphSAGE experiment, a strict
Temporal Split is applied, where the model is trained on historical data (Time Steps 1-34) and
tested on future, unseen data (Time Steps 35-49). This chronological separation prevents data
leakage and mimics a realistic operational environment where the model must flag incoming
transactions based solely on historical patterns.
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Experiments were executed in a computational environment utilizing an NVIDIA Tesla
T4 GPU, Python 3.12, and PyTorch Geometric 2.6.1. The analysis compares three distinct
architectures. The baseline model is a standard Random Forest ensemble configured with 200
estimators and balanced class weights to address the 1:10 class imbalance. We utilized standard
random walks (equivalent to DeepWalk settings, p=1, g=1) as grid searches showed these
performed best for this dataset. Critically, these embeddings are concatenated with the 166 raw
features to form a hybrid 294-dimensional feature vector, merging topological context with

financial attributes.
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Figure 4. Transaction Class Distribution Over 49 Time Steps.
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Figure 5. Correlation matrix of the 166 features in the Elliptic dataset.
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The inductive GraphSAGE model employs a three-layer architecture with 256 hidden
units and mean aggregation to sample neighbor features. To strictly penalize the
misclassification of illicit nodes, the GraphSAGE optimization utilizes a Weighted Cross-
Entropy Loss function, where the penalty for the minority class is weighted approximately 9.2
times higher than the majority class, derived from the inverse class frequency in the training
set.

Model performance was validated using a suite of threshold-independent and threshold-
dependent metrics. Given the extreme class imbalance, the primary success metric is the F1-
Score (Binary) for the illicit class, prioritized to balance Precision (minimizing false alerts) and
Recall (detecting fraud). ROC-AUC and PR-AUC were calculated to assess the model's ranking
quality independent of decision thresholds. Furthermore, interpretability was assessed via
Permutation Feature Importance on the validation set. This analysis quantifies the specific
contribution of the time_step and structural features to the model's decision boundary, ensuring
that the resulting classifications are based on forensic logic rather than spurious correlations.

The dataset comprises fully anonymized public blockchain data with no Personally
Identifiable Information (PII). All transaction IDs are hashed, and feature values are
standardized to prevent reverse-engineering of specific wallet balances. The research strictly
adheres to ethical guidelines for open-source financial data analysis, aiming solely to enhance
technical mechanisms for regulatory compliance (AML/CFT) without compromising user
privacy or facilitating de-anonymization of legitimate entities.

4. RESULTS

The first research objective established a performance benchmark using feature-only
classifiers to quantify the discriminatory power of local transaction attributes without graph
learning. As summarized in Table 2, the Random Forest (RF) classifier achieved the highest
performance among the baselines, yielding an F1-score of 0.9371 and a recall of 0.9175 on the
stratified random split. This performance indicates that local features, such as transaction fees
and input/output counts, contain significant discriminatory signals. In contrast, the Support
Vector Machine (SVM) demonstrated substantially lower efficacy with an F1-score of 0.7994.
This disparity is primarily driven by the precision metric; the SVM model exhibited a precision
of only 0.7050 compared to the 0.9575 achieved by the ensemble-based Random Forest,
resulting in a significantly higher rate of false positives when relying solely on linear or kernel-
based decision boundaries in the feature space.

Model Accuracy F1 score Precision Recall
éﬁ‘;ﬁt"m 0.9880 0.9371 0.9575 0.9175
SVM 0.9548 0.7994 0.7050 0.9230
AdaBoost 0.9870 0.9290 0.9950 0.8713

Table 2. Performance Metrics of Baseline Models

The second objective evaluated whether explicit structural encoding via Node2Vec
enhances detection precision when the full network topology is known (transductive regime).
The hybrid Node2Vec and Random Forest model, trained on the combined vector of 166 raw
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features plus 128 embedding dimensions, achieved an F1-score of 0.9277 and an Accuracy of
0.9868. As detailed in Table 3, the most distinct finding is the model's near-perfect Precision
of 0.9992. Compared to the feature-only baseline, the inclusion of topological embeddings
effectively eliminated false positives.

Model Protocol Accuracy | Precision | Recall |F1 score ROC-AUC
Node2Vec + RF | Transductive 0.9868 0.9992 0.8658 | 0.9277 0.9956
GraphSAGE Inductive 0.9812 0.9561 0.8468 | 0.8981 0.9852

Table 3. Performance of Graph-Based Models

This structural separation is visually corroborated by Figure 6, which illustrates the t-
SNE projection of the learned embeddings. The plot reveals distinct clustering of illicit nodes
(colored red), confirming that money laundering entities exhibit strong structural homophily
that is separable in the high-dimensional embedding space. However, while precision was
maximized, the Recall of 0.8658 decreased slightly compared to the feature-only baseline
(0.9175), indicating that a small subset of illicit actors do not conform to the dominant
topological patterns learned by the random walks.

t-SNE Visualization of Node2Vec Embeddings
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Figure 6. t-SNE Visualization of Transaction Classes in Latent Space.

68



UNEC Journal of Computer Science and Digital Technologies, vol.1, Ne2, 2025

t-SNE: Random Forest Prediction Accuracy in Latent Space
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Figure 7. t-Latent Space Mapping of Random Forest Prediction Accuracy.

The predictive capability of the hybrid model is further detailed in the confusion matrix
(Figure 8) and feature importance analysis (Figure 9).
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Figure 8. Confusion matrix of Node2Vec + RF predictions
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Top 20 Feature Importances — Node2Vec + RandomForest
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Figure 9. Feature Importance of Random Forest Trained on Node2Vec Embeddings

The third objective assessed the inductive capability of the GraphSAGE architecture to
detect illicit activity in future, unseen time steps (Time 35-49). Following the optimization of
the decision threshold to 0.9258, the model achieved a Binary F1-score of 0.8981 on the future
test set. Despite being trained only on the first 34-time steps, as shown in Figure 11, the model
maintained temporal robustness with a Precision of 0.9561 and Recall of 0.8468 on the
subsequent 15 time steps.

Furthermore, the Permutation Feature Importance analysis presented in Table 4
identifies the time_step index as the single most influential predictor with an Importance Score
of 0.072, followed by aggregated neighborhood statistics (e.g., feature 87, feature 86). This
result empirically validates that the model successfully learned the temporal evolution of money
laundering cycles. Finally, the Receiver Operating Characteristic (ROC) curve shown in Figure
8 demonstrates an Area Under the Curve (ROC-AUC) of 0.9852, indicating high ranking
quality even in the inductive setting.

Feature Importance
time_step 0.0687
feature 88 0.0234
feature 87 0.0209
feature 52 0.0205
feature 53 0.0156

Table 4. Top 5 Features by Permutation Importance (GraphSAGE).
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Finally, the Receiver Operating Characteristic (ROC) curve shown in Figure 10
demonstrates an Area Under the Curve (ROC-AUC) of 0.9852, indicating high ranking quality
even in the inductive setting.

5. DISCUSSIONS

The superior precision of the Node2Vec-enhanced framework (0.9992) validates the
theoretical hypothesis that illicit Bitcoin actors exhibit strong structural homophily. As
evidenced by the distinct clustering in the t-SNE visualization (Figure 6), money laundering
entities do not operate randomly but form tight-knit topological communities to facilitate
mixing and layering. The embedding process successfully encoded these high-order
proximities, allowing the Random Forest classifier to resolve ambiguities that feature-only
baselines missed. Conversely, the success of the GraphSAGE model under the inductive
temporal split (F1-score of 0.8981) can be attributed to its ability to capture the sequential nature
of financial crime. The high importance of the time_step feature (0.072), as shown in Figure 8,
indicates that the model moved beyond static topology to learn the temporal cadence of "peeling
chains" a laundering technique where funds are rapidly split across multiple addresses over
time. This finding aligns with theoretical expectations that criminal maneuvers leave a distinct
spatio-temporal footprint that persists even as new identities (addresses) are generated.

Unlike prior studies that predominantly rely on transductive settings where the test set
topology is visible during training, this research explicitly quantified the performance cost of
inductive generalization. The analysis revealed a convergence in performance between the
transductive Node2Vec model and the inductive GraphSAGE architecture, with the
performance gap narrowing to less than 3% in Fl-score. This contradicts earlier literature
suggesting that GNNs inevitably suffer from severe signal dilution (oversmoothing) in highly
imbalanced networks. By integrating temporal features and cost-sensitive loss functions, the
GraphSAGE implementation demonstrated that inductive models can achieve near-parity with
transductive baselines. Consequently, this study establishes a clear operational trade-off:
agencies prioritizing absolute maximum precision for historical audits should utilize
Node2Vec, whereas those requiring real-time monitoring of live transaction streams can deploy
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GraphSAGE with high confidence, accepting a marginal reduction in precision for substantial
gains in deployment scalability.

This study operates within specific boundary conditions inherent to the Elliptic dataset.
Specifically, the model was validated on a subgraph of authenticated Bitcoin transactions where
77.1% of nodes were labeled as "Unknown." The methodological decision to mask these nodes
in the loss function represents a necessary simplification; it assumes that the structural role of
unknown nodes is purely connective, potentially ignoring latent signals if the unknown class
contains a significant volume of unlabeled illicit activity. Furthermore, the temporal scope of
the dataset spans 49 time steps; consequently, the long-term robustness of the model against
concept drift where laundering typologies evolve drastically over years rather than weeks
remains unverified. The results are strictly applicable to the Bitcoin UTXO model and may not
generalize to account-based blockchains like Ethereum without significant feature engineering.

A primary disadvantage of the high-precision Node2Vec approach involves its
computational rigidity. As a matrix-factorization-based technique, generating embeddings
requires access to the full graph structure; thus, classifying a single new incoming transaction
necessitates re-running the random walks and re-training the embeddings for the entire network,
which is computationally prohibitive for real-time applications. While GraphSAGE mitigates
this via inductive aggregation, it encountered difficulties with recall in the earliest training
epochs due to the extreme class imbalance. This obstacle was addressed through the
implementation of a weighted cross-entropy loss function ($w \approx 9.25), which forced the
gradient descent to prioritize the minority class. A potential refinement to enhance the inductive
recall further would involve the integration of attention mechanisms (Graph Attention
Networks), which could dynamically weight the importance of specific neighbors rather than
applying a uniform mean aggregation.

Future research might profitably investigate the application of Temporal Graph
Networks (TGNs) to resolve the discrete limitations of using time_step as a static feature. By
modeling the transaction graph as a continuous-time dynamic system, TGNs could capture
micro-second latency patterns in high-frequency laundering bots. Additionally, the vast volume
of "Unknown" nodes presents an opportunity for Self-Supervised Learning (SSL). Rather than
masking these nodes, future work could employ link prediction or node masking tasks to pre-
train the GNN on the unlabeled data, potentially extracting rich feature representations that
could improve the detection of illicit actors in the absence of labeled supervision. Validation of
these frameworks across cross-chain environments (e.g., bridges and swaps) would further
strengthen the generalizability of these findings to the broader decentralized finance (DeFi)
ecosystem.

5. CONCLUSION

In addressing the first objective regarding the discriminatory power of local attributes,
this study established that ensemble-based feature classifiers provide a strong but limited
baseline for anomaly detection. The distinctive feature of the Random Forest implementation
lies in its ability to leverage non-linear decision boundaries on local financial attributes (e.g.,
fees and volume) without accessing graph topology. Compared to linear separators like SVM
($F1=0.7994%), the Random Forest achieved a significantly higher Fl-score of 0.9371.
However, the analysis confirmed that relying solely on tabular features inherently limits
detection capabilities, as it fails to capture the structural "peeling chain" patterns characteristic
of sophisticated money laundering, necessitating the integration of topological learning.

In addressing the second objective, the hybrid Node2Vec framework demonstrated that
explicit structural encoding maximizes forensic precision in transductive settings. The
distinctive feature of this approach is the concatenation of financial features with topological
embeddings, which enables the separation of homophilic criminal clusters in the latent space.
Compared to the feature-only baseline, this method achieved a near-perfect Precision of 0.9992
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and an F1-score of 0.9277. Consequently, this result resolves the critical issue of false positives
in historical blockchain audits, providing a highly reliable tool for post-hoc investigations
where the full graph topology is known a priori.

In addressing the third objective regarding real-time detection, the GraphSAGE
architecture validated the feasibility of inductive generalization under strict temporal
constraints. The distinctive feature of this model is its ability to aggregate neighborhood
information for previously unseen nodes, guided by the critical time step feature which
emerged as the primary predictor. Although the F1-score of 0.8981 is marginally lower than
the transductive baseline (0.9277), this result represents a significant operational advantage: the
capability to detect approximately 85% of illicit actors in future blocks without the
computational overhead of retraining. This effectively closes the capability gap between static
forensic analysis and live transaction monitoring.

Collectively, these findings advance the field of cryptocurrency forensics by defining a
clear operational hierarchy: transductive embedding models are optimal for high-precision
historical audits, while inductive GNNs are essential for real-time surveillance. By replacing
black-box heuristics with interpretable, topology-aware machine learning, this research
provides a scalable framework for regulatory compliance in decentralized financial ecosystems.
Future developments in Temporal Graph Networks (TGNs) and Self-Supervised Learning will
likely further enhance the granularity of these detection mechanisms, moving closer to a fully
automated anti-money laundering infrastructure.
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