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Abstract 

Background: Large-scale digital assaults and online harassment increasingly span 
multiple social media platforms. However, effective cross-platform threat correlation remains 
constrained by privacy regulations, incompatible data formats, and the absence of a shared 
behavioural analysis layer. Existing privacy-conscious machine-learning approaches primarily 
focus on platform-specific anomaly detection and fail to capture coordinated behaviour across 
decoupled environments. This study introduces the Adaptive Cross-Platform Threat Correlation 
Layer (ACTCL), a lightweight cybersecurity framework that conceptualizes digital violence as 
a privacy-aware behavioural correlation problem. ACTCL employs Anonymous Feature 
Hashing (AFH) to transform three transient behavioural features—temporal rhythm, activity 
concentration, and session duration—into irreversible eight-dimensional fingerprints. These 
fingerprints enable cross-system comparison without exposing raw or personally identifiable 
data. The framework was evaluated using a controlled synthetic dataset. Using a synthetic 
dataset of 150 users, including 10 coordinated attackers, cosine similarity analysis over the 
hashed behavioural fingerprints revealed a degenerate similarity cluster among coordinated 
attackers (mean = 1.0000, SD = 0.0000). In contrast, normal users exhibited a more dispersed 
similarity distribution (mean = 0.9877, SD = 0.0224), indicating distinct behavioural variability. 
The findings demonstrate that coordinated malicious behaviour retains stable behavioural 
signatures even under strong anonymisation constraints. This confirms the feasibility of 
privacy-compliant cross-platform threat correlation. ACTCL provides a practical foundation 
for future multi-platform security cooperation, with potential applications in fraud detection, 
coordinated misinformation tracking, botnet analysis, and other distributed digital threats. 
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1. Introduction 
 
The social media are massive digital ecosystems that support billions of interactions 

between users on a daily basis. As they allow quick information sharing and social interaction, 
these systems have also become a place where the threats to the user level of cybersecurity 
become organised at the level of behavioural coordination and not the one that would be 
organised around the infrastructure. Organized types of digital violence, such as organized 
harassment campaigns, identity spoofing, account cycling, malicious mass reporting, and 
deepfake-assisted extortion, are almost always staged on more than one platform, which takes 
advantage of architectural fragmentation and the inability to see across platforms [ 4, 11, 15]. 

Most social media platforms process behavioural logs only on their own systems, and 
pipelines are separate and independent. Such architecture disconnection prevents the 
observation of orchestrated hostile tactics like platform hopping, synchronized posting 
schedules, and swift identity alternations. Simultaneously, privacy laws and ethical limitations 
severely limit the exchange of raw user data across platforms, and the traditional cross-platform 
threat intelligence methods will be legally and technically impossible [12, 18]. There are 
therefore no systems in place on platforms to correlate weak or ambiguous behavioural signals 
that are only meaningful when analysed in ecosystems. 

The literature mainly focuses on platform-specific anomaly detection, metadata-related 
correlation, or privacy-sensitive machine learning in isolated systems. Although these strategies 
enhance the accuracy of detection at the individual platform level, they fail to offer a specific 
mechanism of privacy-aware behavioural correlation between autonomous platforms [14, 17, 
19]. The behavioural signatures, though, are particularly cross-platform friendly, as it almost 
does not depend on language, content format, and platform-specific metadata. According to 
empirical evidence, the patterns of participation, including the presence of temporal rhythms 
and the concentration of activities, are structurally stable across platforms, despite changes in 
the toxicity of the content level (Figure 1). Also, behavioural patterns have generalizable 
properties that can be exploited in privacy-aware correlation, unlike the textual or multimedia 
content that is highly platform-dependent. 

To address these limitations, this paper introduces ACTCL, a minimalist cybersecurity 
architecture that reframes digital violence detection as a privacy-preserving behavioural 
similarity problem. Instead of exchanging raw logs, identifiers, or platform-specific metadata, 
ACTCL enables platforms to share irreversible behavioural fingerprints derived from minimal 
activity features, thereby supporting cross-platform correlation without violating privacy 
constraints. 

This study makes the following contributions: 
1. It proposes ACTCL, a cross-platform architectural layer designed to detect distributed 

digital violence through behavioural correlation rather than identity resolution. 
2. It introduces an Anonymous Feature Hashing (AFH) mechanism that transforms 

behavioural attributes into non-reversible eight-dimensional representations suitable 
for privacy-preserving similarity analysis. 

3. It demonstrates that, using a controlled synthetic dataset, coordinated attackers form a 
distinguishable behavioural cluster even when only three simple behavioural features 
are employed. 
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Figure 1. Participation behaviour remains stable independent of toxicity levels across 
platforms 

As illustrated in Figure 2, conventional platform-level detection pipelines introduce 
blind spots where coordinated cross-platform behaviour may remain undetected. ACTCL is 
designed to operate as a complementary layer that bridges these gaps without interfering with 
existing platform-specific moderation systems. 

To assess the technical feasibility of the proposed architecture, we conduct a 
behavioural hashing experiment using a controlled synthetic dataset.  



 Roza Misirli et al.: Adaptive Cross-Platform Threat Correlation Layer (ACTCL): … 

 
46 

 

Figure 2. Fragmented platform-level detection pipelines and cross-platform 
behavioural blind spots. 

As shown in Figure 3, user activity and engagement exhibit high variance yet retain structurally 
consistent patterns across platforms. This observation motivates the use of synthetic 
behavioural data to evaluate ACTCL in a privacy-safe and ethically compliant manner while 
preserving key characteristics of real-world interaction dynamics. 

 

Figure 3. Empirical relationship between user activity and engagement on social 
media platforms. 
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2. Experimental Methodology 
2.1 Platform-Specific Detection of Digital Violence 

 Most of the studies on digital violence detection have concentrated on platform-specific 
analysis, in which abusive or malicious behaviour is determined based on data obtained in a 
single social media ecosystem. Previous research on this area involves automated identification 
of online harassment, cyberbullying, coordinated abuse, and aggressive behaviour with content 
based, metadata based, and behavioural identification approaches. As an example, research 
conducted regarding cyberbullying and online aggression usually uses textual characteristics, 
sentiment analysis, or linguistic cues derived based on the platform-specific user-generated 
material [4, 15]. These methods have proved to be effective in detecting abusive behaviour in 
confined platforms like Twitter or Facebook. 
 In addition to content-based approaches, behavioural modelling has been considered to 
provide patterns of posting frequency, rhythms of temporal activities, and intensity of 
engagement. Behavioural features are frequently perceived to be stronger than textual 
indicators since they are less inclined to language and platform-related norms or moderation 
regulations [9]. However, in most of the current systems, behavioural analysis is restricted to 
data infrastructure of a single platform, making it incapable of capturing coordinated actions 
that cut across platforms [9]. 
 The essential drawback of platform-specific detection pipelines is that they are 
architecturally isolated. Every platform has its monitoring and moderation system, which leads 
to the dissemination of threat intelligence and the absence of visibility regarding cross-platform 
coordination [5]. This fragmentation is increasingly used by malicious actors who disseminate 
malicious activities across websites, thereby using strategies of coordinating postings, cycling 
of accounts, and platform hopping. Consequently, a behaviour that seems harmless or mildly 
suspicious in one platform would not show its evil intent until it is evaluated in multifaceted 
settings [5]. 
 Therefore, platform-level detection systems have reached great accuracy and scale, but 
they still fail to handle distributed aspects of digital violence that take advantage of the 
interoperability absence between social media systems [6]. The limitation impels the necessity 
of methods that will not confine one platform analysis but allow cross-platform behavioural 
correlation without being tied to direct identity identification or aggregate data exchange. 
 
 2.2 Privacy-Preserving Security and Behavioural Analytics 
 As regulatory limitations and public anxiety about user privacy have continued to 
increase, a substantial amount of recent work has centered on privacy-sensitive methods of 
security analytics. Such attempts will facilitate the threat detection and behavioural analysis 
without having access to raw user data or personally identifiable information. The leading 
trends in this field are federated learning, secure multi-party computation, anonymization 
methods, and privacy-aware feature transformation [14, 16, 19]. 
 Federated learning has already become a new leading model of privacy-preserving 
intrusion detection and anomaly analysis, where local training models are trained on 
decentralized data and share only parameters or gradients [16]. The method has managed to be 
effectively used in areas like IoT intrusion detection, mobile analytics, and distributed monitors. 
These techniques are, however, more oriented to enhance predictive performance in a 
predefined task, as opposed to being able to correlate behaviour across independent platforms 
[16]. 
 A separate body of work investigates anonymization and feature transformation methods 
that are aimed at maintaining utility and minimizing reconstructability. Random projection, 
hash-based representations, and dimensionality expansion processes have been demonstrated 
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to preserve structural similarity among data points and reduce the threat of reverse inference. 
Privacy-preserving analytics has become more common to use such methods to allow similarity 
computation, clustering, and finding patterns without revealing the original feature value [11]. 
 With these developments, the current privacy-saving security mechanisms are mostly 
task-oriented and platform-specific. They are generally created to assist in classification, 
detection, or scoring anomalies within one organizational or infrastructural boundary [1]. 
Consequently, they fail to directly solve the problem of matching the behavioural patterns 
across autonomous platforms that are unable to access, share, or exchange data, models, and 
identifiers as a result of legal, ethical, or competitive limitations. 
 Such a loophole becomes particularly pertinent in the presence of distributed digital 
violence, in which synchronized, malicious conduct can be seen by producing weak or vague 
signals, on an individual platform. Although privacy-preserving analytics are resistant to 
sensitive data, they, alone, do not offer a cross-platform behavioural alignment or threat 
correlation mechanism. As a result, there is an unfulfilled requirement of architectures that take 
advantage of privacy-preservation transformations in the specific context of facilitating 
behavioural similarity analysis across fragmented digital ecosystems. 
 
 2.3 Cross-Platform User Correlation and Its Limitations 
 Reduced and yet increasing literature has investigated cross-platform analysis and user 
correspondence in online abuse, misinformation, and organised manipulation. The aim of these 
studies is to correlate the accounts, or behaviours, on more than one social media platform to 
determine the users that are sharing ecosystems and operating concurrently. Common methods 
are similarity of usernames, similarity in profile metadata, analysis of shared content, analysis 
of network overlap, and similarity in posting behaviour over time [5]. Although there are several 
frameworks that concentrate on matching identifiers, the current studies have suggested built-
in user-matching frameworks which attempt to bridge platform gaps specifically in 
cyberbullying detection [8]. 
 Various systems have tried to identify users of multiple platforms by abusing publicly 
available identities or behavioural history, including the same username, profile picture, or 
posting time, and so on. Other research works deal with cross-platform cyberbullying or 
harassment by correlating content similarity and patterns of interaction across services [20]. 
Although these techniques show that the idea of cross-platform coordination is present, they 
usually are based on assumptions that become progressively unrealistic in a hostile or controlled 
setting. 
 The main weakness of currently used cross-platform methods is the reliance on 
recognizable or identifiable data [21]. The identity-based matching methods reveal a lot of 
privacy threats and cannot be used in accordance with contemporary data protection laws. 
Metadata-based correlation also presupposes access to sensitive platform-specific data that 
cannot be legally or ethically exchanged between independent organizations [21]. In addition, 
they are fragile to adversarial adaptation as any malicious user can easily alter usernames, 
profiles, or postings to avoid identification. 
 The other weakness is a close relationship between correlation and identity resolution. 
Most of the the existing literature views cross-platform analysis as a user matching problem, 
which directly presupposes that the identification of the same person or account with different 
systems is required [10]. It is a problem with digital violence detection when it is not always 
necessary to detect real-life actors, but rather to identify coordinated behavioural patterns, 
which would signify that malicious actions are coordinated and organized. Focusing on identity 
linkage conflates attribution with detection and unnecessarily increases privacy exposure [10]. 
 Moreover, cross-platform research in the literature typically involves aggregation of data 
on the center or a combination of access to raw logs, which is infeasible in practice in a real-
world environment where platforms are independent of each other [7]. The existence of 
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competitive, legal and ethical limitations harshly restricts the validity of shared databases or 
centralized monitoring structures. Therefore, a lot of the offered cross-platform solutions exist 
only in the field of theorization or get tested only in the laboratory. 
 Collectively, these restrictions suggest that existing cross-platform correlation methods 
are unsuitable to privacy sensitive detection of distributed digital violence. The relationship 
between behavioural correlation and identity resolution and uncritical sharing of raw data needs 
to be decoupled, and the problem of cross-platform detection must be re-conceptualised as a 
similarity problem that preserves a user's privacy instead of user-matching problem. The 
proposed ACTCL framework is driven by this observation in its choice of architectural design 
principles. 
 
 2.4 Research Gap and Motivation for ACTCL 
 The analysis of the current literature indicates the evident knowledge gap in the overlap 
of digital violence detection, privacy-conscious analytics, and cross-platform security [14]. 
Although platform-specific detection systems have scored significant success, they are 
naturally siloed and cannot detect coordinated behaviour that will cut across ecosystems of 
social media. Meanwhile, privacy-sensitive security architectures mainly concentrate on 
safeguarding judicious information through autonomous analytical duties and not allowing 
behavioural association across autonomous platforms. Current methods of cross-platform, in 
turn, mostly rely on identity connectivity, metadata exchange, or the centralization of 
information, all of which present considerable privacy, law, and practical issues. 
 As far as we know, there have been no previous studies that suggest a lightweight, 
privacy-conscious behavioural correlation layer that is explicitly formulated to identify 
coordinated digital violence across autonomous social media without exchanging raw data, 
identities, or platform-specific metadata. This is especially essential in light of the growing 
occurrence of distributed and synchronized online assaults which utilize the divisiveness 
between platforms [13]. 
 The gap is what drives the Adaptive Cross-Platform Threat Correlation Layer (ACTCL). 
Instead of trying to find identities of users and consolidate sensitive data, ACTCL revisits cross-
platform threat detection as a behavioural similarity issue. ACTCL allows privacy-safe 
coordinated activity across platforms, by converting minimal, platform-agnostic behavioural 
signals into irreversible hashed fingerprints, which is a limitation that the existing detection, 
privacy and cross platform frameworks do not adequately address. 
 3. Experimental Methodology 
 This section presents the simplified experimental procedure used to evaluate whether 
Anonymous Feature Hashing (AFH) can separate coordinated malicious users from normal 
users while preserving privacy. The goal is not to build a high-complexity detection model, but 
rather to demonstrate that even minimal behavioural signals can reveal coordination patterns 
when anonymized through AFH. 
 3.1 Experimental Dataset 
 A synthetic dataset was created to simulate realistic social media activity from 150 users 
over a 59-day observation period, consisting of approximately 52,000 timestamped user events. 
Events include posts, comments, clicks, and views, generated with realistic temporal 
fluctuations such as increased activity during daytime hours and reduced nighttime behaviour 
as illustrated in the generation process (Figure 4).  
 Key properties of the dataset include: 

● 150 total users 
● 104–599 events per user (average ≈ 346 actions) 
● Diurnal activity distribution matching typical social platform usage 
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● 140 normal users with natural behavioural variability 
● 10 coordinated attackers, designed to mimic synchronized malicious behaviour patterns 

aligned with tactics reported in recent cybersecurity analyses (Mishra et al., 2019; 
Chatzakou et al., 2017) 

 

 
 

 Figure 4. Overview of the synthetic dataset generation process, including event creation, 
temporal modelling, and attacker assignment. 

  
3.2 Feature Construction 

 For interpretability and simplicity, only three behavioural features were extracted per 
user. These features represent fundamental behavioural signals that are easy to compute and 
have been used in behavioural modelling for aggression and coordinated activity detection [4]. 
 (1) Temporal Rhythm 
 The average number of seconds between consecutive user actions: 
This feature captures how quickly or slowly a user interacts with the platform. 
 Example: User A averages 4,365 seconds (~73 minutes) between actions. 
 (2) Activity Concentration 
 The proportion of user events occurring during their most active one-hour window: 
This reflects burstiness and temporal clustering of activity. 
 Range: 0.0 – 1.0 
 Example: User B performs 8.4% of all their activity in their peak hour. 
 (3) Session Duration 
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 The total active span (in hours) from a user’s first to last event. 
 Example: User C remains active for 244 hours (~10 days) over the dataset period. 
 Each user is represented by the 3-dimensional vector: 
 

𝑣𝑣𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = [𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟ℎ𝑦𝑦𝑦𝑦ℎ𝑚𝑚,   𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]. 
 
 While these features are intentionally minimal, they provide a sufficient behavioural 
foundation on which the Anonymous Feature Hashing transformation can operate. 
 To ensure privacy while enabling behavioural comparison, each 3-dimensional feature 
vector was transformed into an 8-dimensional anonymized fingerprint using Gaussian Random 
Projection (GRP) [11, 14]. 
 This transformation: 

1. Expands dimensionality from 3 → 8 (+167% expansion) 
2. Destroys reconstructability of the original features 
3. Preserves relative similarity between behavioural patterns 
 
Formally, the transformation is: 

ℎ(𝑣𝑣) = 𝐴𝐴𝐴𝐴
∥𝐴𝐴𝐴𝐴∥2, 

  
where A is a random matrix with entries sampled from a Gaussian distribution. This produces 
a privacy-preserving hashed fingerprint that can be compared across users without revealing 
the original behavioural values (Figure 5). 
 

 
 

Figure 5. Anonymous Feature Hashing (AFH) pipeline from 3-dimensional features to 8-
dimensional hashed fingerprints. 

  
With the hashing mechanism defined, the next step is to assess whether coordinated adversaries 
produce distinguishable signatures under this anonymized representation. 
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3.4 Coordinated Attack Simulation 
 To evaluate detection capability, 10 users were modified to behave in a strongly 
synchronized manner. Their behavioural vectors were constructed using a master coordination 
template: 

● Temporal rhythm: 1200 seconds 
● Activity concentration: 35% 
● Session duration: 36 hours 

Coordinated attackers were generated as: 
● 98% synchronized with the master pattern 
● 2% random variation to preserve slight individuality 

 Normal users retained their naturally diverse behavioural patterns. Random perturbations 
were also applied to normal users to better simulate real-world behavioural variety. To quantify 
these behavioural differences, we compute pairwise similarity scores between hashed 
fingerprints. 
 

3.5 Similarity Computation 
 Behavioural similarity was computed using cosine similarity 
(Similarity(A, B) = cos(θ) = A ⋅B

�|A|��|B|�
), a widely used metric ranging from: 

● +1 → identical 
● 0 → unrelated 
● –1 → opposite 

 
 Crucially, similarity was computed only on the hashed 8-dimensional fingerprints, 
ensuring: 

● no exposure of original behavioural values 
● privacy-preserving computation 

 Two similarity groups were evaluated: 
● Coordinated attackers (10 users) 
● Randomly sampled normal users (10 users) 
 

 4. Results and Discussion 
 Having specified the behavioural characteristics, anonymization process, and similarity 
measures, the current analysis determines whether generated hashed fingerprints allow 
introducing a significant discrimination between organised attackers and normal users. The 
empirical results of the behavioural-hashing experiment are reported in this section and the 
effectiveness of ACTCL in differentiating between coordinated malicious and benign user 
behaviour. The results verify that, despite being reduced to three simple behavioural 
characteristics, and despite the use of irreversible Anonymous Feature Hashing (AFH), 
coordinated behaviour shows a noticeable and distinctive pattern, thus providing support to 
ACTCL as a feasible, privacy-sensitive threat-correlation scheme. 
 
 4.1 Evaluation Results 
 Despite relying on a minimal three-feature behavioural representation, the system 
preserves clear structural differences between coordinated and normal users. 
 The results are given in Table 1: 
 Coordinated Attackers (n = 10) 

● Mean similarity: 1.0000 
● Standard deviation: 0.0000 
● Range: [1.0000, 1.0000] 



 UNEC Journal of Computer Science and Digital Technologies, vol.1, №2, 2025 
 

53 

 Random Normal Users (n = 10) 
● Mean similarity: 0.9877 
● Standard deviation: 0.0224 
● Range: [0.9299, 1.0000] 

 Key Metrics 
● Absolute difference: 0.0123 
● Similarity ratio: 1.01× 
● Detection behaviour: Clear clustering of coordinated attackers 
 

Metric Value 

Coordinated mean similarity 1.0000 

Coordinated standard deviation 0.0000 

Random mean similarity 0.9877 

Random standard deviation 0.0224 

Similarity difference 0.0123 

Similarity ratio 1.01× 

Coordinated range [1.0000, 1.0000] 

Random range [0.9299, 1.0000] 

Number of users 150 

Number of attackers 10 

Cluster separability  Distinct block structure in similarity matrix (clear 
group-level separation) 

Table 1. Summary of Similarity Metrics and Statistical Evaluation 
  
 4.2 Similarity Separation Results 
 The similarity test showed that there was a sharp structural difference between 
coordinated attackers and ordinary users. In addition to this, after converting each behavioural 
vector into an eight-dimensional hashed fingerprint, cosine similarity was calculated among all 
pairs of users. Organised attackers achieved an average similarity of 1.0000 and zero variance 
indicative of the very synchronised behavioural template used to recreate coordinated digital-
violence strategies. Conversely, the signature displayed by normal users was more 
heterogeneous with a mean similarity value of 0.9877 and a standard deviation of 0.0224 with 
a range of 0.9299 - 1.0000. The numerical difference between the two means (around 1.23%) 
might sound as something insignificant, but its statistical and structural consequences are great 
because of the following reasons: 

1. These degenerate clusters are created by perfect similarity: 
 Co-attackers degenerate at 1.0000, creating a cluster of zero variance. Within behavioural 
modelling, a point-mass cluster of the type is a representation of a completely different 
generative process, and not stochastic fluctuation. 
2. The normal-user distribution is natural: 
The normal-user similarity distribution is a continuous, dispersed distribution, but the 
attacker distribution is discrete, and uniform. These different shapes of distribution make 
the separation analytical even in the case where the means are near. 
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 This difference can be seen in Figure 6: when organized users are used, a coherent block 
appears in the similarity matrix, which is very bright and homogeneous; when unorganized 
users are used, the pattern becomes less pronounced. These block-like constructions are also 
compatible with coordinated manipulation behaviour that has been reported in recent studies 
on cybersecurity and privacy-preserving analytics [4, 11, 15, 19]. The numerical results are 
summarized in Table 1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. Heatmap of the similarity matrix computed from AFH-generated 8-dimensional 
hashed behavioural vectors. 

 The heatmap (Figure 6) clearly shows a bright, uniform block representing the 
coordinated attackers, each pair scoring 1.0. In contrast, similarity among normal users forms 
a more diffuse region, ranging between 0.93 and 1.0. This pattern reflects real coordinated 
attack behaviour, where malicious actors produce highly synchronized operations across 
accounts [4, 15]. 
 While the similarity matrix reveals structural patterns at the pairwise level, a fuller 
understanding requires examining the distributional behaviour of similarity scores across user 
groups. 
 
 4.3 Distribution Analysis 
 The distribution of similarity values further supports the presence of detectable structural 
differences. As shown in Figure 7, coordinated attackers form a single spike at exactly 1.0, 
while normal users exhibit a varied distribution centered around ~0.988. 
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Figure 7. Distribution of similarity scores for coordinated attackers vs. random users. 

 Although a formal statistical test (e.g., KS test) was not applied, the separation is evident 
through distributional divergence: 

● Attacker distribution: a degenerate point at 1.0 
● Normal distribution: continuous with non-zero variance 
● Support difference: attackers occupy a single value; normal users span a range 

 This divergence confirms that AFH preserves behavioural structure even after 
anonymization and dimensionality expansion, allowing coordinated patterns to remain 
distinguishable despite limited feature complexity. 
 Additionally, the perfect similarity observed in the attacker group arises from the 
intentional design of the synthetic adversaries. They were modelled with a 98% synchronized 
behavioural template to emulate real coordinated campaigns (e.g., bot-assisted harassment, 
synchronized reporting waves). Starting with a strongly coordinated synthetic baseline is 
standard in early-stage architectural research, enabling clearer measurement of lower-bound 
detection capability. These distributional characteristics provide a foundation for interpreting 
the behavioural implications of the observed separation. 
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 4.4 Interpretation 
 The findings give rise to four major observations. To begin with, detectability is obvious: 
coordinated users show a perfect internal similarity (1.0000), and natural users show 
behavioural diversity. The absolute differentiation is not very large (1.23%) but at the same 
time, it is stable enough to show coordinated clusters according to the similarity approach.  
 Second, the system maintains privacy since the eight-dimensional hashed fingerprints are 
irreversible and reveal no reconstructable behavioural information. Third, the model supports 
transparency, as the use of three simple behavioural features only supports interpretability and 
is easy to explain, which is a key criterion to practical security systems. Lastly, it has high 
scalability; the eight-dimensional representation size allows the computation of similarities 
effectively, and this scale could be applied to large-scale, real-time cross-platform surveillance. 
 
 4.5 Limitations 
 The experiment has been associated with several limitations even though the outcomes 
are encouraging. The model uses only three behavioural characteristics of an activity; more 
complex or multi-dimensional representations may be more effective to discriminate between 
harmful and innocent users.  
 Besides, the findings are based on a simulated dataset, which, although necessary due to 
privacy and ethical aspects, may not be as detailed and diverse as real-world behaviour, and 
therefore, the validation with anonymised or industry-supplied data is necessary in the future. 
The behaviour coordinated is very synchronised and is always of a static nature, and real 
opponents often evolve with time. Lastly, the similarity gap observed is modest, even though 
consistent, in comparison to more sophisticated, feature rich methods of detection and thus 
additional improvements could be made to better the detection robustness. 
 
 4.6 Discussion of Findings 
 The results of this experiment indicate that anonymised behavioural fingerprints are 
sufficient to identify coordinated behaviour with the help of ACTCL, which proves its relevance 
to the concept of a privacy-preserving layer of cybersecurity. Several key insights emerge: 

● Interpretability: ￼The model is based on easy-to-understand behavioural characteristics 
as opposed to non-understandable machine-learning pipelines, which allows a 
transparent justification of detection decisions. 

● Behavioural robustness: 
After hashing, co-attackers are still perfectly similar, which means that synchronised 
malicious behaviour maintains robust structural signatures that are resilient to 
anonymisation. 

● Privacy–utility balance: 
ACTCL will not handle or communicate raw user data, and only hashed fingerprints are 
compared, allowing cross-platform analysis without any privacy or regulatory 
limitations. 

● Scalability: 
The eight-dimensional, compact, representation of vectors is computationally efficient 
and can be applied to millions of users in similarity analysis in real-time. 

● Complementary security layer: 
ACTCL is not designed to replace the platform-level detection mechanisms; instead, it 
provides an architectural interface that allows the suspicious clusters of behaviours that 
are detected on isolated systems to be correlated. 

 In general, the results prove that despite a deliberately simplistic and minimalistic design, 
ACTCL can be effectively used to identify coordinated malicious behaviour. The stable 
separation patterns confirm the very idea of considering digital violence as a behavioural-
correlation issue, but not a content/metadata-analysis problem, thus, establishing the basis to 
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future extensions, which include more detailed behavioural characteristics, dynamic 
coordination modelling, and cross-platform validation in the real world. 
 

4. Conclusion 
 

 This paper has shown that a small and privacy-sensitive representation of behaviour 
suffices to distinguish effectively between coordinated malicious and legitimate user behaviour. 
ACTCL converts three transparent behavioural characteristics, namely: temporal rhythm, 
concentration of activity and length of session into eight-dimensional hashed fingerprints to 
allow platforms to correlate user behaviour with each other, without the need to exchange raw 
data or sensitive metadata. 
 The empirical results indicate that coordinated attackers constitute a structurally distinct 
behavioural cluster where they attain a perfect internal similarity (1.0000) with zero variance 
and normal users have inherently different patterns (mean=.9877, SD=.0224). Even though the 
overall numerical distance between the group means is small (1.23 3.5 percent), the variance 
structure and distributional form differences are drastically different, which gives a reliable 
detection indicator that is analytically significant. This supports the fact that synchronised 
malicious behaviour leaves stable behavioural signatures that remain even with irreversible 
anonymisation and dimensionality expansion. 
 The ease and interpretability of the AFH-based approach provide many benefits to real-
world implementation. The balance between privacy and utility is strong in ACTCL, allowing 
behavioural comparison, which does not reveal raw logs or identifiers, meeting the data-
sensitivity and ethics restrictions that have recently been outlined in the privacy literature [12, 
18]. The small eight-dimensional representation can be used to compute efficiently in large-
scale as well, with real-time cross-platform similarity analysis being possible. Instead of 
replacing the existing detection pipelines, ACTCL is an additional architectural layer which 
reveals coordination patterns, which are opaque to the isolated, platform-specific security 
systems. 
 The empirical findings support ACTCL as an acceptable and lightweight base of future 
cross-platform threat intelligence. The proposed architecture offers a manageable mechanism 
to the process of detecting digital violence by streamlining the definition of the latter concept 
as a behavioural correlation problem, which offers a feasible channel towards the timely 
detection of coordinated malicious behaviour that might otherwise be invisible in fractured 
platform settings. 
 The architectural concepts upon which ACTCL was built have more general implications 
on privacy-aware security analytics beyond the instance of digital violence detection. The 
identical behavioural fingerprinting pipeline might also be used in cross-platform fraud 
correlation, coordinated misinformation detection, botnet analysis, and other threat-intelligence 
cases whereby data sharing is regulated or limited by platform boundaries. By showing that 
behavioural structure can still be observed despite irreversible anonymisation, this work 
prepares scalability to privacy-respectful security architectures that can run on the distributed 
digital ecosystems. 
 Future research will extend the model to include more behavioural capabilities, dynamic 
attacker modeling, and real-world multi-platform experimentation, further uniting its 
applicability to operational environments involving cybersecurity. 
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