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Abstract 

 

The early and accurate identification of plant diseases play a vital role in ensuring 

agricultural productivity and food security. In this study, we investigate the effectiveness of 

state-of-the-art convolutional neural network (CNN) architectures for the automated 

classification of apple leaf diseases using the Plant Village Apple dataset. Five high-

performance models DenseNet-264, EfficientNet-B4, EfficientNet-B5, Inception-V3, and 

MobileNet-V3-Large were fine-tuned on expertly labeled images. DenseNet-264 outperformed 

other models, achieving an accuracy of 98.32%, precision of 97.83%, recall of 98.21%, and an 

F1-score of 98.02%. Inception-V3 also demonstrated competitive results, while MobileNet-V3-

Large offered a compelling balance between accuracy and computational efficiency, making it 

suitable for deployment on mobile and edge devices. The findings highlight the capability of 

deep learning to deliver fast, reliable, and objective diagnostics from ordinary field images, 

significantly reducing the need for manual inspection. This approach holds promises for 

enhancing disease management, safeguarding crop yield, and supporting precision agriculture.  

 Keywords: apple disease detection, deep learning, plant village 

 

1. Introduction 

Apples are among the most widely grown fruit crops globally, with a total estimated 

annual production of about 86 million tons in 2020, reflecting their importance in agriculture. 

In addition to the sheer amount produced, apples are also important for their nutrient density, 

containing significant amounts of dietary fiber, vitamins, antioxidants, and other health-

promoting factors. Even as apples are agriculturally and nutritionally important, apple 

production faces challenges from foliar diseases that increasingly impact apple crop yields. 

Major leaf diseases affecting apples include apple scabs, black rot, and cedar apple rust, all of 

which can have negative impacts on tree health and fruit. For the most part, traditional 
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diagnoses are made using visual inspection, which is very labor intensive, subjective and allows 

for diagnostic error depending on observer's experience. As global demand for crops continues 

to increase, along with the need for sustainable farming methods, early and accurate detection 

of leaf disease has become increasingly important [1]. 

In light of these difficulties, artificial intelligence (AI), specifically deep learning (DL), 

has proven to be a game changer in the diagnostic of plant diseases. Advanced DL architectures, 

such as Deep Neural Networks (DNNs) or Convolutional Neural Networks (CNNs), are quite 

adept at visual data analysis and can recognize complex structures and morphology features to 

ultimately classify plant diseases from images of leaves. Detection methods, such as the 

polymerase chain reaction (PCR) method, have high specificity, and reliability; however, a PCR 

typically requires expensive laboratory equipment, trained professionals and, therefore, are 

often impractical for field-based implementations, given issues with lodging and logistics. DL-

based diagnostics and imaging techniques, on the other hand, require only images, allowing for 

rapid, scalable, and cost-effective detection of disease diagnostics. Traditional machine learning 

(ML) methods use their own defined features to derive meaning from the data provided and can 

be used with relatively small datasets, relying on hand-crafted features downstream. In 

environments that are exceptionally complex, or have high variability, traditional ML methods 

may not provide the discriminative performance ideal for robust classification. DL takes the 

approach of learning new hierarchical representations from a raw data response, which allows 

the model to achieve generalization and flexibility of use. This is particularly valuable when 

working in low resource conditions for agriculture [2].  

The current study applies deep learning models that have been trained with transfer 

learning, a technique that allows domain-specific tasks with limited data to use models that 

have previously been trained on large-scale datasets. When training deep learning models use 

transfer learning, this type of training significantly decreases computation time, and enhances 

model performance & accuracy, particularly in industry areas like agriculture, where labeled 

datasets of high quality can be difficult to acquire. By using CNN architecture that has been 

trained on diverse sets of images such as ImageNet, models can successfully learn complex 

features to classify apple leaf disease effectively. This leads to more robust and efficient models, 

which aids in advancing the development of applicable tools powered by AI for precision 

agriculture. 

To establish the relevance of this approach, we now turn to a review of prior research 

conducted in this domain. Pacal et al. conducted a systematic review of 160 studies published 

between 2020 and 2024 on deep learning-based plant disease detection, focusing on 

classification, detection, and segmentation tasks. Their review emphasizes the significant 

advantages of deep learning approaches over traditional methods, particularly in early and 

accurate disease identification, thereby offering valuable insights for sustainable agriculture [3]. 

P et al. introduced the WRLSB-HPS algorithm for plant leaf disease detection using the Plant 

Village dataset, combining various machine learning techniques such as Logistic Regression, 

SVM, Naive Bayes, and Random Forest in a weighted ensemble approach to enhance detection 

accuracy. This method achieved impressive performance, with 98.4% accuracy, 98.2% 

precision, 97.9% recall, and 97.5% F1-score [4] . Abelonian et al. proposed a hybrid framework 

combining Convolutional Neural Networks (CNNs) and Vision Transformers (ViT) to enhance 

classification accuracy. The ensemble model, which incorporates VGG16, Inception-V3, and 

DenseNet20 architectures for global feature extraction and ViT for local feature capture, 

demonstrated superior performance on two publicly available datasets (Apple and Corn), 
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achieving accuracy rates of 99.24% and 98%, respectively [5] Gupta et al. introduced Plant 

DetectNet, a hybrid deep learning model intel  rated with the Internet of Things (IoT) to improve 

plant disease detection. The framework k utilized sensor data and images from the Plant Village 

dataset, employing techniques like GRU for temporal feature extraction, Depthcat CNN for 

spatial features, and a Gated ConvNeXt model for enhanced classification. This approach 

achieved 98.8% accuracy and 95.9% recall, outperforming existing methods and demonstrating 

scalability and efficiency in plant disease detection [6] . 

The review of the literature indicates that deep learning methods have significant benefits 

for plant disease detection, and with improvements over traditional methods. When trained on 

big datasets, these methods can accurately identify diseases in plants. The largest advantages 

included early detection, accuracy, cost, and speed. The applications of transfer learning allow 

models to still perform well with smaller datasets. The combination of deep learning with new 

technologies such as IoT and large datasets also increases their capabilities. Ultimately, the role 

of deep learning models in detection and management of plant diseases will become 

increasingly crucial and provide more advancements for agricultural practices in the future. 

 

2. Material and Methods  

 

2.1 Plant Village dataset 

The quality and structure of the dataset are crucial determinants of the effectiveness of 

deep learning models. In contrast to traditional machine learning methods, which typically rely 

on manual feature extraction and smaller datasets, deep learning models necessitate large, high-

quality datasets to effectively capture meaningful and distinguishing features from raw data. 

This is essential to ensure that deep models generalize effectively and deliver strong predictive 

performance. Table 1. outlines various components of this study's dataset, which was 

partitioned into training, validation, and test sets to facilitate thorough model evaluation and 

prevent data leakage during the learning process [7] .  

 

 Images % 

Train 2219 70 

Test 477 15 

Validation 475 15 

Total 3171 100 

 

Table 1. Distinction between train test and validation 

 

The Plant Village Apple dataset was selected as the main data source for the research, as 

it is an established, publicly available benchmark dataset for plant disease identification. The 

Plant Village dataset is known for its wide coverage and high resolution and contains data for 

a variety of plant species and disease classes, including healthy and diseased. This research 

focused only on the apple subset for classification of disease. The total sample size of the dataset 

being used was 3,171, which were partitioned into training, validation, and testing sets for 

evaluating the model (70% training, 15% testing, 15% validation) [8]. 

Figure 1. presents a curated selection of image samples from the PlantVillage dataset 

utilized in this study, illustrating the visual characteristics of different apple leaf conditions.  
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Figure 1. Examples from our dataset 

 

The figure is organized into four distinct categories, displayed row-wise: "Healthy" 

leaves, exhibiting no visible signs of disease; leaves afflicted with "Cedar apple rust," typically 

characterized by orange or rust-colored lesions; leaves showing symptoms of "Black rot," often 

presenting as dark, necrotic spots or lesions; and leaves infected with "Apple scab," which 

commonly manifests as dark, olive-green to black, velvety spots. Each category shows multiple 

examples, highlighting the intra-class visual variability and the specific pathological symptoms 

that the deep learning models were trained to differentiate. This visual representation 

underscores the diversity of the dataset and the challenges inherent in automated disease 

classification. 

 

2.2 Data Augmentation 

Data augmentation is an accepted process in deep learning to enhance model performance 

and is particularly useful for situations where you do not have access to an extremely large 

dataset and a wide variety of data. The data augmentation process artificially increases the 

training dataset by performing a few transformations which will have the effect of modifying 

or control the variation in the data. Data augmentation can help reduce overfitting, particularly 

when the dataset is small or unbalanced, and it aids in better generalization to unseen data. For 

this research study, a strong data augmentation pipeline was used during the preprocessing stage 

to increase the model robustness and prediction accuracy. The data augmentation 

transformations used in this research study are: RandomResizedCrop which randomly crops 

and resizes an image to have a fixed size of 224x224, which encourages spatial variation and 

averts overfitting to a certain part of the image; RandomHorizontalFlip encourages the model 

to learn features that are invariant to orientation, by randomly applying horizontal flipping; 

Random Rotation randomly rotates the image in a rotationally invariant manner from ±15 

degrees which can simulate captured image  

from different orientations and helps the model to become more invariant to rotation; ColorJitter 

to simulate various changes in lighting scenarios and environments, randomly adjusting the 

brightness, contrast, saturation and hue values. The images were converted into PyTorch tensors 

using ToTensor and normalized with ImageNet statistics for consistent and stable training, and 
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faster convergence.These augmentations are anticipated to significantly reduce the risk of 

overfitting, improve generalization, and ultimately increase the model's predictive performance. 

 

2.3 Deep Learning Architectures 

Machine learning has revolutionized technological progress and human advancement, 

becoming a key driver in various modern applications, such as enhancing search engine 

capabilities, moderating user-generated content on social media, and powering personalized 

recommendation systems for e-commerce. As technology rapidly evolves, machine learning 

methods are increasingly integrated into everyday life, manifesting in smart technologies and 

advanced systems with capabilities like visual object detection, speech recognition, and 

adaptive dynamic content in digital environments [9] . 

The rapid advancements in artificial intelligence are largely attributed to the evolution of 

deep learning. A specialized branch of machine learning, deep learning utilizes intricate, multi-

layered neural networks to derive complex, non-linear representations from vast datasets. These 

models identify detailed features through hierarchical structures and are trained using 

backpropagation. Deep learning has proven exceptionally successful across multiple fields, 

including image and video analysis, speech processing, and natural language understanding. 

Convolutional Neural Networks (CNNs) excel in processing spatial data, while Recurrent 

Neural Networks (RNNs) are ideal for handling temporal or sequential data such as speech and 

text [10, 11] . 

Although Geoffrey Hinton introduced the fundamental principles of deep learning in 

2006, its broad adoption came after deep models drastically outperformed traditional algorithms 

in the ImageNet Large Scale Visual Recognition Challenge. Since then, deep learning has 

consistently provided cutting-edge results in a wide range of applications, such as pattern 

recognition, classification, forecasting, drug discovery, signal analysis, finance, healthcare, and 

defense, and it remains the leading paradigm in both AI research and practical deployment [12]. 

Figure 2. delineates a generalized algorithmic workflow for training a Convolutional 

Neural Network (CNN). The process commences with the initialization of the CNN 

architecture, followed by an iterative training phase over multiple epoch. Within each epoch, 

the training data is processed in mini batches. For every mini batch, a forward pass is executed, 

where input data traverses through the network layers to compute output feature maps, apply 

activation functions, and perform pooling operations. Subsequently, the feature maps are 

flattened, and a loss function quantifies the discrepancy between the predicted and actual labels. 

This loss is then utilized in the backward pass to compute gradients with respect to the model 

parameters, which are subsequently updated using an optimization algorithm such as SGD or 

Adam, ultimately yielding a trained CNN model. This structured approach, involving iterative 

forward and backward propagation, is fundamental to the learning capability of CNNs in visual 

recognition tasks. 
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Figure 2. A typical CNN algorithm [13]. 

 

2.4 Algorithms Used 

EfficientNet B4 leverages a compound scaling technique that simultaneously adjusts the 

network’s depth, width, and input resolution in a principled manner. By uniformly scaling these 

dimensions, it achieves a high level of classification accuracy without incurring significant 

computational overhead. EfficientNet B4 has proven to be an effective and scalable 

architecture, frequently outperforming traditional CNNs on diverse image recognition tasks 

[14] . 

EfficientNet B5 represents an enhanced variant within the EfficientNet model family, 

incorporating a more extensive scaling of architectural dimensions. With increased layer depth, 

wider convolutional channels, and larger input sizes, EfficientNet B5 enables richer feature 

extraction. It maintains computational efficiency while delivering superior accuracy, making it 

well-suited for complex vision applications that demand high performance [14].  

ResNet 50 consists of 50 convolutional layers and introduces the concept of residual 

learning through shortcut connections, which bypass one or more layers. These connections 

allow the network to effectively mitigate the vanishing gradient issue, thereby enabling the 

training of much deeper models. ResNet 50 has become a foundational architecture in computer 

vision due to its robust performance and ease of optimization on large-scale datasets such as 

ImageNet [15]. ResNet variants and their layers are shown in Figure 3. 
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Figure 3. Layer-wise architectural specifications for ResNet variants (18-layer to 152-

layer), detailing convolutional block configurations, output feature map dimensions, and 

computational complexity in FLOPs. 

 

DenseNet 264 adopts a densely connected design where each layer receives the 

concatenated outputs of all preceding layers. This architectural strategy promotes efficient 

feature propagation and reusability, which leads to improved model compactness and faster 

convergence. DenseNet 264 has exhibited exceptional accuracy in fine-grained image 

classification tasks and is recognized for its parameter efficiency despite its depth [16]. 

DenseNet variants and their layers are shown in Figure 4. 

 

Figure 4. Architectural details of DenseNet variants (DenseNet-121, DenseNet-169, 

DenseNet-201, and DenseNet-264), outlining layer types, output sizes, dense block 

configurations, and transition layers. 

 

Inception v3 incorporates a modular design that utilizes techniques such as convolution 

factorization, auxiliary classifiers for regularization, and reduced dimensionality in 

intermediate layers. These innovations collectively enhance computational efficiency and 

model expressiveness. Inception v3 remains a widely adopted solution for visual recognition 

problems, particularly those requiring multi-scale feature abstraction and efficient inference 

[17]. 
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MobileNet v3-large is an advanced lightweight CNN architecture tailored for low-power 

and real-time applications. It combines depthwise separable convolutions with squeeze-and-

excitation modules and adopts the hard-swish activation to improve performance without 

increasing computational cost. This design enables MobileNet v3-large to deliver strong 

accuracy while remaining suitable for deployment on mobile and embedded platforms with 

limited resources [18]. 

 

3. Results and Discussions 

 

3.1 Experimental Design 

The experiments presented in this study were conducted on a Linux system with Ubuntu 

22.04, featuring an Intel Core i5-13600K CPU, 32 GB DDR5 RAM, and an NVIDIA RTX 

3090 GPU. All models were developed using PyTorch with NVIDIA's CUDA augmentation. 

The models were trained and evaluated under consistent experimental conditions and with the 

same set of hyperparameters to ensure standardization and systematic comparison. 

 

3.2 Performance Metrics 

Evaluating the performance of deep learning models is an essential step for assessing their 

usefulness, justifying related decisions, and facilitating data-driven choices. Performance 

metrics can serve several primary purposes, like assessing the performance of classification 

models, assisting optimization, identifying errors or biases in reports of the data, comparing 

models, and detecting overfitting. We have specifically focused on performance metrics for 

grape disease classification in this paper and made conventional choices for evaluation criteria 

that are rigorously established in academic literature. 

The fundamental metrics used in this project accuracy, precision, recall, and F1-score are 

key components in deep learning evaluation as well in other areas. Accuracy is defined as the 

proportion of correctly classified samples compared to the total number of samples and provides 

a view of overall performance. Precision (true positives/(true positive + false positives)) 

indicates how reliable the model is in classifying relevant instances (high precision = few or no 

false positives) and recall shows which instances the model identified as true positives, and 

recall is relevant for measuring relevance. The F1-score is defined as the harmonic means of 

precision and recall, combining them as a single measure of performance (also relevant for false 

positives and false negatives). However, while these definitions can feel complicated, they can 

be represented mathematically as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

3.3 Results 

In this study, we evaluated the performance of various advanced convolutional neural 

network (CNN) architectures, including DenseNet-264, EfficientNet-B4, EfficientNet-B5, 
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Inception-V3, MobileNet-V3-Large, and ResNet-50, specifically applied to apple leaf disease 

classification using the Plant Village dataset. Each model was fine-tuned under identical 

experimental conditions, including consistent hyperparameters, to ensure reliable and 

systematic comparison. The evaluation employed several key metrics widely recognized in the 

literature, namely accuracy, precision, recall, and F1-score, each providing complementary 

insights into different aspects of the models' predictive capabilities. These metrics are essential 

in assessing the overall effectiveness, reliability, and applicability of CNN models in practical 

agricultural scenarios. 

Table 2 summarizes the comparative performance of the CNN models. DenseNet-264 

exhibited the highest performance across all evaluated metrics, achieving an impressive 

accuracy of 98.32%, precision of 97.83%, recall of 98.21%, and an F1-score of 98.02%. This 

outcome highlights DenseNet-264’s superior capability in accurately distinguishing between 

different apple leaf disease categories, significantly outperforming other architectures evaluated 

in this study. 

 

Models Accuracy % Precision % Recall % F1-Score % 

DenseNet-264 98.32 97.83 98.21 98.02 

EfficientNet-B4 93.08 90.74 91.04 90.62 

EfficientNet-B5 93.71 91.96 92.12 92.01 

İnception-V3 97.90 97.73 97.65 97.66 

MobileNet-V3-Large 93.71 94.73 93.17 93.91 

ResNet-50 93.71 92.05 92.54 92.24 

 

Table 2. Results of CNN-based models on PlantVillage dataset 

 

Inception-V3 also delivered highly competitive results, attaining an accuracy of 97.90% along 

with robust precision, recall, and F1-score metrics. Its ability to handle complex feature 

extraction tasks efficiently is underscored by the minimal misclassification observed in the 

confusion matrix. Inception-V3's performance closely rivals that of DenseNet-264, confirming 

its effectiveness in detailed and accurate image analysis. 

EfficientNet variants demonstrated commendable but slightly lower performance. Specifically, 

EfficientNet-B4 achieved 93.08% accuracy with precision and recall of approximately 91%. 

EfficientNet-B5 improved slightly upon this performance, registering an accuracy of 93.71%, 

precision of 91.96%, and recall of 92.12%. While both EfficientNet models showed good 

training stability and satisfactory classification results, their performance was not as robust as 

DenseNet-264 or Inception-V3, particularly in handling the nuanced features of apple leaf 

diseases. 

MobileNet-V3-Large stood out by effectively balancing computational efficiency and 

predictive performance. With an accuracy of 93.71% and precision of 94.73%, MobileNet-V3-

Large proved suitable for deployment in resource-constrained environments such as mobile and 

edge devices, making it a practical choice for field applications. Although it exhibited slightly 

higher confusion rates than DenseNet-264 and Inception-V3, its lightweight nature provides 

significant advantages for practical implementations. 

ResNet-50, despite its popularity and widespread use in other applications, provided moderate 

performance in this context, achieving an accuracy of 93.71%. While its precision and recall 

metrics were reasonably balanced, the overall effectiveness in distinguishing between nuanced 
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apple leaf conditions was not as pronounced, indicating limitations potentially related to its 

architectural design or depth. 

Demonstrating its superior capabilities, DenseNet-264, along with Inception-V3, showed rapid 

and stable convergence during training and achieved minimal confusion in classifying the apple 

leaf images, with DenseNet-264 particularly excelling in these aspects. EfficientNet variants 

exhibited consistent but slightly slower improvement trajectories, while MobileNet-V3-Large 

demonstrated efficiency with acceptable levels of confusion. ResNet-50 had steady 

performance throughout training but encountered more difficulties in accurate disease 

classification. The training graph of our DenseNet-264 model, which demonstrated the most 

superior performance, is shown in Figure 6, and its confusion matrix is shown in Figure 7. 

 

 
Figure 6. Training and validation loss (left) and accuracy (right) curves over epochs for the 

DenseNet-264 model, illustrating learning progression. 

 

Figure 7. Confusion matrix for the DenseNet-264 model, illustrating classification 

performance across apple leaf disease categories (Scab, Black rot, Cedar Apple Rust (CAR), and 

Healthy). 
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3.4 Discussion 

The results of this study underscore the considerable potential of deep learning-based 

models for automating apple leaf disease detection, thereby supporting precision agriculture. 

DenseNet-264, with its densely connected structure that enhances gradient flow and feature 

reuse, stood out as the most effective model, delivering both high accuracy and balanced 

classification performance across metrics. These results highlight their aptitude for handling 

complex image patterns present in disease-affected leaves. 

Inception-V3 also demonstrated robust performance, benefiting from its multi-scale 

feature abstraction capability. Its strong results confirm the model's ability to generalize well 

across the dataset, making it a viable candidate for scenarios requiring high reliability. The high 

precision and recall achieved suggest that both DenseNet-264 and Inception-V3 could 

substantially reduce false diagnoses, thereby improving disease management efficiency. 

MobileNet-V3-Large's performance is especially relevant for real-world applications, 

where computing resources may be limited. Its lightweight architecture and acceptable 

accuracy levels indicate that it can serve as an effective model for on-device diagnosis tools, 

such as mobile applications used by farmers in the field. This extends the impact of AI tools 

from research settings to practical, everyday agricultural use. 

Although EfficientNet-B4 and B5 performed moderately well, their results suggest that 

their compound scaling strategy may not capture the complex visual characteristics of apple 

leaf diseases as effectively as DenseNet or Inception. Meanwhile, ResNet-50, despite its 

historical success, faced challenges in distinguishing subtle variations among disease 

categories, possibly due to insufficient depth or lack of advanced feature extraction modules. 

The overall findings validate the utility of CNNs in plant pathology and reinforce the need 

for model selection based on the deployment context. While accuracy is critical, factors such 

as model size, inference speed, and ease of integration into portable systems should guide the 

choice of architecture for operational use. Future work should consider the generalizability of 

these models under variable field conditions, including different lighting, background, and 

occlusion scenarios. Further, the integration of explainable AI techniques could enhance model 

interpretability, increase user trust and facilitate the adoption of AI-based solutions in 

agriculture. Finally, testing these models on other apple cultivars and regional datasets would 

provide additional validation and support global scalability. 

 

4. Conclusion 

 

This research explores the performance of advanced convolutional neural networks in the 

automated detection of apple leaf diseases using the PlantVillage Apple dataset. Five cutting-

edge models DenseNet-264, EfficientNet-B4, EfficientNet-B5, Inception-V3, and MobileNet-

V3-Large were fine-tuned on expertly annotated apple leaf images. Among them, DenseNet-

264 delivered the most impressive results, achieving 98.32% accuracy, 97.83% precision, 

98.21% recall, and a 98.02% F1-score. Inception-V3 also showed strong performance, closely 

rivaling the top model, while MobileNet-V3-Large proved to be a practical choice for on-device 

applications due to its efficient architecture and competitive accuracy. These results emphasize 

the strength of deep learning in converting everyday agricultural images into rapid, accurate, 

and consistent diagnostic tools. By minimizing reliance on manual inspections, the models offer 
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a reliable approach to timely and economic disease detection, ultimately supporting better crop 

protection and yield improvement. 
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