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Abstract 

 Federated learning enables distributed training of machine learning models across a 

network of decentralised computational nodes, ensuring data privacy by retaining sensitive data 

on local devices. This paradigm supports the construction of high-performance models by 

leveraging non-i.i.d. and heterogeneous data dispersed across multiple clients, thereby 

removing the dependency on centralized data aggregation. Federated learning frameworks 

utilize a range of model aggregation algorithms—such as FedAvg (federated averaging), 

FedProx (proximal gradient methods), and FedOpt (adaptive federated optimization)—to 

achieve convergence by integrating locally updated model parameters into a global model, all 

while upholding data locality constraints. Fuzzy logic, characterized by its capacity to model 

vagueness and imprecision through fuzzy sets and linguistic variables, provides a robust 

mechanism for approximate reasoning in uncertain environments. This study proposes FedFIS, 

a novel fuzzy logic-based aggregation scheme embedded within the federated learning 

architecture. The FedFIS methodology circumvents the reliance on gradient-based optimization 

and computationally intensive mathematical formulations by leveraging fuzzy inference 

mechanisms, thus offering a computationally lightweight and privacy-preserving alternative for 

federated parameter aggregation. 
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 1. Introduction 

 

While distributed training is applicable to traditional machine learning algorithms such 

as k-nearest neighbors, support vector machines, Bayesian networks, and decision trees, it 

frequently requires the transmission of raw data, which introduces significant privacy concerns 

[1]. To address these challenges, Federated Learning (FL) has emerged as a decentralized 

learning framework [2–4]. It allows multiple clients to collaboratively train a shared model 

without transferring their local data to a central repository [5]. Each client independently trains 

a local model on its private dataset and shares only model parameter updates with a central 

server or aggregator [6, 7]. This server integrates the received updates to refine the global model 

iteratively, enabling collaborative learning while maintaining data privacy. The flexibility and 

privacy guarantee of FL have led to its adoption in sensitive domains such as healthcare [8], 

finance [4], and automotive systems [9], where confidentiality is critical. 
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Although distributed training is feasible for traditional machine learning algorithms such 

as k-nearest neighbors, support vector machines, Bayesian networks, and decision trees, it 

typically requires the exchange of raw data, which can lead to significant privacy concerns [10]. 

To address these issues, FL has emerged as a decentralized learning framework [11–13]. FL 

enables multiple clients to collaboratively train machine learning models while keeping their 

data local and private [14]. Each client trains a model on its own dataset and shares only model 

parameter updates with a central server [15]. This server aggregates updates to improve the 

global model, allowing for joint model development without compromising data privacy [16]. 

The flexibility and privacy-preserving nature of FL have led to its growing adoption across 

industries where data sensitivity is critical [12]. 

In healthcare, FL facilitates collaborative model development for disease diagnosis by 

allowing hospitals and research institutions to contribute to model training while maintaining 

patient data confidentiality [17]. In the finance sector, FL supports robust fraud detection by 

enabling data collaboration among financial institutions without exposing customer data [13]. 

Similarly, in the automotive industry, FL is used to develop autonomous driving systems 

collaboratively, enabling manufacturers to share knowledge derived from driving data without 

disclosing proprietary information [18]. 

While existing building energy forecasting models are effective, there remain key areas 

for improvement. Most current approaches focus on training individual models for each 

building, often overlooking the advantages of collaboration and shared data. Federated 

Learning, as a privacy-preserving and distributed learning paradigm, has recently gained 

significant traction in the energy domain. Applications include probabilistic solar power 

generation decomposition [19], building heating load forecasting [20], electricity consumption 

clustering [21], reinforcement learning-based voltage control [22], and voltage forecasting 

enhanced with differential privacy [23]. 

Recent reviews have introduced various FL paradigms, such as Horizontal FL, Vertical 

FL, Transfer FL, Cross-Device FL, and Cross-Silo FL, and emphasized the importance of 

secure aggregation and encryption techniques to mitigate associated challenges [24]. 

Traditional centralized machine learning methods used in building energy analysis often neglect 

privacy concerns and are susceptible to limitations arising from data scarcity. Additionally, 

differences in energy consumption patterns across buildings present challenges in developing a 

generalized model. Personalized federated learning has shown potential in addressing both data 

heterogeneity and privacy but remains underexplored in the context of building energy 

analytics. 

To address these challenges, recent efforts have proposed novel architectures, such as a 

Mixture of Experts deep learning model, to enhance personalization and better handle the non-

i.i.d. nature of building energy datasets [25, 26]. 

Federated Learning relies on model aggregation to enhance global model performance 

across distributed clients. Various aggregation algorithms have been proposed to tackle critical 

challenges, particularly communication efficiency and privacy preservation. Among them, 

FedAvg [27] remains one of the most widely adopted techniques. It selects a subset of clients 

in each training round and computes a weighted average of their local model parameters based 

on dataset size. FedProx [28] extends FedAvg by introducing a proximal term to mitigate the 

impact of local optima during Stochastic Gradient Descent (SGD) training in federated settings. 

In contrast to fixed aggregation, adaptive aggregation methods dynamically adjust to 

update strategies. For example, a temporally weighted aggregation method [29] enhances global 

model accuracy by factoring in previous local model contributions. Inverse Distance 

Aggregation (IDA) [30] is another technique that assigns weights based on model similarity. 

Additionally, adaptive learning algorithms adjust key training parameters, such as learning 

rates, in response to changing data distributions, resource constraints, or environmental factors. 

These enhancements often lead to improved convergence and accuracy. Since SGD is not 

always optimal in environments with heavy-tailed gradient noise, adaptive optimizers such as 
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Adagrad, Adam, and Yogi have been integrated into federated learning pipelines to improve 

training dynamics [31]. 

This research proposes a novel fuzzy logic-based aggregation method for federated 

learning. Unlike conventional approaches that rely on gradient-based updates and derivative 

computations, the proposed method uses fuzzy inference to guide the aggregation process. This 

technique aims to reduce computational complexity, address challenges arising from data 

heterogeneity, and mitigate model drift. The fuzzy logic framework provides a flexible and 

interpretable mechanism for integrating client updates, offering a privacy-aware and 

computationally efficient alternative for global model optimization. 

 

 2. Federated Learning 

 

FL, initially developed by Google researchers in 2016 to address privacy challenges in 

deep learning, has rapidly expanded its scope of applications. Early applications focused on 

image classification and mobile-based applications such as keyboard suggestions and language 

models. Recognizing its potential in various domains, FL has been increasingly adopted in 

sectors like healthcare, finance, and smart grids, where the need for privacy-preserving data 

collaboration aligns well with the decentralized nature of the FL framework. 

One of the primary aims of FL is to determine the optimal global model of 𝜃 that can 

minimize the aggregated local loss function 𝑙𝑓𝑘(𝜃𝑘). 
 

                                         𝑙𝑓𝑘(𝜃𝑘) =
1

𝑁𝑘
∑ 𝑘𝑙𝑓(𝑥𝑗 , 𝑦𝑗 , 𝜃𝑘)

𝑁𝑘
𝑗                                        (1)

       

where 𝑥 is the input data feature, 𝑦  is the output data label, 𝑁𝑘 is the local data size, 𝑘𝑙𝑓 is the 

loss function and 𝑘 is the client index. 

 

                                                        min
𝜃

𝑙𝑓(𝜃) = ∑
𝑁𝑘

𝑁
𝑙𝑓𝑘(𝜃𝑘)𝐶𝑙×𝐾

𝑘=1
                                         (2)

     

where   𝐶𝑙 is the participation ratio and 𝑁 = ∑ 𝑁𝑘
𝐶𝑙×𝐾
𝑘=1

. 

𝑔𝑘 is the gradient of the 𝑘𝑡ℎ client that will be sent to the central server for aggregation. The 

gradient of (1) has been given as below: 

 

                                                                                𝑔𝑘 = ∇𝑙𝑓𝑘(𝜃𝑘)         (3) 

  

In order to update the global model, (4) and (5) have been used to determine global model’s 

weight for (𝑡 + 1)𝑡ℎ instant. 

 

                                                             ∀𝑘, 𝜃𝑘+1 ⟵ 𝜃𝑘 − 𝜂. 𝑔𝑘                                                     (4) 

 

                                                        𝜃𝑡+1 ⟵ ∑
𝑁𝑘

𝑁
𝜃𝑘+1𝐶𝑙×𝐾

𝑘=1
          

(5) 

 

In general, FL can be classified as into horizontal and vertical FL based on their characteristics 

of data distribution among the connected clients. 

 

  3. FedFIS: Fuzyy Aggregation  

 

Conventional aggregation methodologies, including those prevalent in existing literature, 

typically employ historical data to derive update algorithms. In contradistinction to these 
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established paradigms, this research proposes a novel aggregation method predicated on fuzzy 

logic controller design principles. 

Fuzzy logic-based controllers offer a robust and adaptive framework for the management 

of complex systems characterized by inherent uncertainty and imprecision. Unlike classical 

control systems reliant on crisp, binary logic, fuzzy logic controllers utilize linguistic variables 

and fuzzy sets to emulate human-like reasoning. This facilitates the representation of imprecise 

or ambiguous information, rendering it particularly efficacious in applications where precise 

mathematical models are intractable. A canonical fuzzy logic controller comprises three core 

modules: a fuzzification stage, a rule-based inference engine, and a defuzzification stage. The 

fuzzification stage translates crisp input values into fuzzy sets, while the inference engine 

applies a predefined set of fuzzy rules to determine appropriate control actions. Finally, the 

defuzzification stage transforms the fuzzy output back into a crisp value suitable for system 

control.  

This approach engenders controllers that exhibit enhanced resilience to noise, 

disturbances, and operational variations, thereby improving system performance and stability. 

In this study, the current weight value received from each client and the differential 

between this received weight value and the preceding weight value serve as inputs to the fuzzy 

controller. The resulting output determines the final weight update magnitude for each client. 

The architectural schema of the proposed methodology is depicted in Figure 1. 

 

 
                    Figure 1. Proposed aggregation method similar to fuzzy logic controller. 

 

In Figure 1, the symbol 𝑧−1 represents a zero-order hold or unit-time delay element, while 𝜃 

and  
𝑑𝜃

𝑑𝑡
 denote the weight value received from each client and the differential between the 

current and preceding weight values, respectively. The resultant weight update value is 

computed independently for each client at the termination of each epoch. This methodology 

effectively mitigates client drift and provides a robust and resilient approach to noise and 

significant variations. By incorporating both instantaneous and historical weight change 

magnitudes, the proposed system establishes a more dynamic architectural paradigm. 

Furthermore, this approach obviates the requirement for complex mathematical operations, 

such as derivatives, and implements a predictive aggregation methodology by integrating the 

rate of weight change. 

 

 Change of Weight 

Weight 𝑁𝐵𝑤𝑐 𝑍𝑍𝑤𝑐 𝑃𝐵𝑤𝑐 

𝑁𝐵𝑤  𝑁𝐵𝑤𝑢
1  𝑁𝐵𝑤𝑢

2  𝑍𝑍𝑤𝑢
3  

𝑍𝑍𝑤  𝑁𝐵𝑤𝑢
4  𝑍𝑍𝑤𝑢

5  𝑃𝐵𝑤𝑢
6  

𝑃𝐵𝑤  𝑍𝑍𝑤𝑢
7  𝑃𝐵𝑤𝑢

8  𝑃𝐵𝑤𝑢
9  

 

Table 1. 9-rule configuration. 

 

The rule-based inference mechanisms employed within this framework are detailed in Tables 

1, 2, and 3. The rationale for these rule sets mirrors the conventional methodology used in the  

development of standard fuzzy logic controllers. Table 1 delineates the rule set for the 9-rule 

configuration utilizing three membership functions (MFs). In these tables, NB, NS, CZ, PS, and 
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PB represent Negative Big, Negative Small, Closure to Zero, Positive Small, and Positive Big, 

respectively. The subscripts, andcorrespond to the new weight value received from each client, 

the weight change, and the final weight update computed by fuzzy logic, respectively.  

This study provides comparative evaluations of various aggregation methodologies within 

federated learning frameworks to assess the utility of federated learning for photovoltaic power 

prediction for 14 clients, as shown in Figure 2. 

 

 
 

Figure 2. Proposed FedFZY system applied to 14 client case. 

 

The FL process is characterized by a sequence of distinct operational stages: 

 

① Initialization and ②Model Distribution: The central server initiates the process by 

generating a preliminary model, typically through the random initialization of weights within 

an artificial neural network. This initial model is subsequently disseminated to all participating 

electrical energy generation forecasting clients. 

③ Decentralized Local Model Training: Each client engages in local model training utilizing 

its private dataset. This process avoids the transmission of sensitive raw data. Local training 

employs gradient descent optimization algorithms to refine model parameters, minimizing a 

predefined loss function, such as Mean Squared Error (MSE) for regression tasks, thereby 

enhancing the model's predictive accuracy on local data. 

④Model Parameter Upload to Server: Upon completion of local training, each client transmits 

the updated model parameters to the central server for aggregation. Critically, only model 

parameters, encapsulating the learned knowledge, are shared, preserving the privacy of the 

underlying datasets. 

⑤ Model Aggregation and ⑥ Global Model Distribution: The central server aggregates the 

received model updates to construct an enhanced global model. This study employs a fuzzy 

logic-based controller for aggregation, utilizing client weight values and their differentials as 

inputs to determine final weight updates. The refined global model is then distributed back to 

each client. 

Local Model Update and Integration: Each client updates its local model using the aggregated 

global model parameters, leveraging the collective intelligence of the network. This process 

facilitates collaborative model training while maintaining client data privacy. The optimal 

global model is achieved by minimizing the aggregated loss function as defined in Equation 2, 

across all participating clients. 

Iterative Convergence: The aforementioned cycle is repeated until the model converges to an 

optimal global state or a predefined number of iterations is reached. The FL architecture is 

depicted in Figure 2. 
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The FL procedure was executed using a distributed system comprising 15 computational nodes: 

14 clients and 1 central server. Each node was equipped with an Intel Core i7 processor (2.40 

GHz), 8 GB RAM, 512 GB SSD, and Windows 10 Pro operating system. All training and FL 

operations were performed within the MATLAB 2022b environment. Inter-node 

communication was facilitated through an Ethernet protocol via a shared router. 

  

 4. Experiments 

 

The experimental results demonstrate that the proposed FedFZY aggregation method 

achieved the most favorable performance, producing the lowest values for Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). 

Although FedOpt showed performance metrics close to those of FedFZY, the remaining 

aggregation methods, including FedAvg, FedProx, and TWA, performed comparatively worse. 

For comparative analysis, five aggregation methods were implemented within the 

federated learning framework: FedAvg, FedProx, TWA, FedOpt, and the proposed FedFZY. 

These methods were used to forecast energy generation characteristics for individual clients. 

The evaluation was carried out using MAE, RMSE, and MAPE metrics across 14 buildings 

located in 7 districts of Erzurum. 

On average, the FedFZY method outperformed the other aggregation techniques, 

delivering improvements of 2.77% in MAE, 1.71% in RMSE, and 3.64% in MAPE. These 

results highlight the effectiveness of FedFZY in the given application.  

 

5. Results and discussion 

 

To facilitate a comprehensive comparison, the aggregation methods FedAvg, FedProx, 

TWA, FedOpt, and the proposed FedFZY were applied individually to each client within the 

designed federated learning architecture to forecast energy generation characteristics. The 

performance of each method was evaluated using MAE, RMSE, and MAPE metrics across 14 

distinct buildings located in 7 districts of Erzurum. The minimum values for these metrics are 

presented in Tables 2 to 4. 

 

  Aggregation Method 

  FedAvg FedProx TWA FedOpt FedFZY 

D
is

tr
ic

t 

Yakutiye 138.5692 138.6880 129.7358 126.6989 122.0647 

Aziziye 182.8269 196.2342 197.7295 176.9135 171.8654 

Palandoken 253.4424 250.8306 237.0463 229.6824 226.1908 

Tortum 164.2067 165.0764 167.3689 152.7521 143.7930 

Ispir 228.5725 224.9069 220.8055 198.8149 197.4416 

Askale 79.2471 79.8421 80.8624 74.5186 72.1975 

Cat 108.4894 110.1439 112.4134 100.6183 97.8732 

 Average 165.0506 166.5317 163.7088 151.4284 147.3466 

Table 2. Model performance in terms of MAE 

This study presents a comparative evaluation of various aggregation methods within FL 

frameworks to assess their effectiveness in photovoltaic (PV) power prediction. A novel FL-

based approach is proposed to develop a generalized model capable of accurate forecasting 

across multiple individual PV farms. Unlike localized learning paradigms, FL enhances 

generalizability by enabling collaborative model training without sharing raw data. Unlike 

centralized learning approaches, FL preserves data privacy by ensuring that training data 

remains on each client's device. 
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  Aggregation Method 

  FedAvg FedProx TWA FedOpt FedFZY 

D
is

tr
ic

t 
Yakutiye 160.2125 158.1006 142.7451 142.2913 140.8243 

Aziziye 213.9827 224.8338 210.2695 198.0675 197.3896 

Palandoken 290.8992 272.9868 262.0130 249.8793 245.7975 

Tortum 189.8992 185.5666 176.3057 175.5641 171.8751 

Ispir 258.6381 258.0029 236.5154 233.0638 225.4206 

Askale 189.8992 194.8306 87.9216 83.5781 81.3138 

Cat 92.7525 94.5550 117.0463 116.1255 115.8217 

 Average 199.4690 198.4109 176.1166 171.2242 168.3489 

Table 3. Model performance in terms of RMSE 

  Aggregation Method 

  FedAvg FedProx TWA FedOpt FedFZY 

D
is

tr
ic

t 

Yakutiye 0.3635 0.3740 0.3689 0.3466 0.3299 

Aziziye 0.5132 0.5514 0.5750 0.5073 0.4764 

Palandoken 0.6775 0.6521 0.6356 0.6270 0.6037 

Tortum 0.4268 0.4337 0.4434 0.4031 0.3953 

Ispir 0.5855 0.5629 0.5745 0.5619 0.5580 

Askale 0.2206 0.2237 0.2318 0.2184 0.2054 

Cat 0.2980 0.3076 0.3154 0.2857 0.2774 

 Average 0.4407 0.4436 0.4492 0.4214 0.4066 

Table 4. Model performance in terms of MAPE 

Model generalization capability is evaluated using a client holdout strategy, where the data from 

one client is reserved for testing, and the remaining clients' data is used for training. After the 

training and validation phases, a separate holdout subset is utilized to provide a final estimate 

of model performance. This approach supports the development of models that are robust and 

applicable to future, unseen data. 

Experimental results indicate that the proposed FedFZY aggregation method achieved the best 

performance in terms of MAE, RMSE, and MAPE. The closest performance to FedFZY was 

observed with the FedOpt method, while the other evaluated aggregation methods yielded 

comparatively poorer results, as shown in Tables 2 to 4. 

 

 4. Conclusion 

 

This study addresses the complex challenge of distributed photovoltaic (PV) energy 

forecasting, which is further complicated by strict data privacy requirements across PV farm 

deployments. To tackle these issues, a privacy-preserving architecture for PV power prediction 

is proposed. The architecture incorporates a fuzzy logic-based aggregation mechanism within 

a federated learning (FL) framework, allowing collaborative model training among 

geographically dispersed PV farm clients while maintaining data privacy. This research 

introduces a novel contribution by investigating the use of fuzzy logic-based aggregation 

strategies in the context of federated learning for data-driven PV energy forecasting. By 

leveraging FL, the approach significantly reduces inter-client and client-server communication 

bandwidth since raw data is never shared with a central aggregator. As a result, data 

confidentiality is maintained, and no centralized data repository of individual PV farm 

observations is created. Comprehensive experimental results confirm that the FedFZY 

algorithm, which integrates fuzzy logic into the FL paradigm, achieves superior performance 

compared to conventional aggregation techniques. Moreover, FedFZY demonstrates strong 

generalization capability on out-of-distribution datasets, highlighting its robustness, 

adaptability, and suitability for real-world applications. 
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