
UNEC Journal of Computer Science and Digital Technologies

Volume 1, № 1, 2025, pp. 50-59

Section:

Software Engineering &

https://doi.org/10.30546/UNECCSDT.2025.01.050 Systems Development

 50

The model context protocol: a standardization analysis for application

integration

Sevinj Karimova1*, Ulviya Dadashova2

1*,2 Department of Digital Technologies and Applied Informatics, UNEC, Baku, Azerbaijan

 0000-0002-4715-2680, kerimli.sevincli@unec.edu.az,

0009-0005-9148-514X, dadashova.ulviya.ruslan.2022@unec.edu.az

Abstract

 The Model Context Protocol (MCP), introduced by Anthropic, addresses critical

standardization challenges in artificial intelligence application development by providing a

unified framework for connecting Large Language Models to external resources and

computational tools. This paper presents a comprehensive analysis of MCP's architecture,

implementation patterns, and potential impact on the AI development ecosystem through both

theoretical evaluation and empirical case study analysis. Through systematic evaluation of

MCP's core components and detailed analysis of real-world implementations, we examine how

this protocol addresses fragmentation in AI integration approaches. Our analysis reveals that

MCP's client-server architecture and structured abstraction layer offer significant potential

benefits for modularity, security, and developer productivity, while identifying key challenges

in adoption and ecosystem maturity. This study provides a comprehensive academic analysis

of MCP's standardization approach and its implications for the evolving AI development

landscape.

 Keywords: Model Context Protocol, AI integration, standardization, Large Language

Models, protocol design

1. Introduction

The rapid advancement of Large Language Models (LLMs) has created unprecedented

opportunities for developing intelligent applications that interact with external data sources,

Application Programming Interfaces (APIs), and computational tools. However, the AI

development ecosystem faces significant fragmentation, with each framework implementing

proprietary integration approaches. This fragmentation results in incompatible solutions,

duplicated development effort, and increased complexity for developers seeking to build robust

AI applications.

Anthropic's Model Context Protocol represents the first major standardization effort to

address these integration challenges [1]. The Model Context Protocol establishes a client-server

architecture that enables AI applications to access external resources and invoke computational

functions through a unified interface, potentially transforming how AI applications are

developed and maintained. The significance of this standardization effort extends beyond

Received:
29/05/2025

Revised:
03/06/2025

Accepted:
06/06/2025

Published:
14/06/2025

mailto:ORCID:%200000-0002-4715-2680
mailto:kerimli.sevincli@unec.edu.az
https://orcid.org/0009-0005-9148-514X
mailto:dadashova.ulviya.ruslan.2022@unec.edu.az

UNEC Journal of Computer Science and Digital Technologies, vol.1, № 1, 2025

51

technical convenience, as it aims to enable more modular, maintainable, and interoperable AI

applications while establishing security and performance patterns that can benefit the entire

ecosystem [3]. Industry adoption by major platforms including Copilot, Cognition, and Cursor

demonstrates the protocol's growing recognition as a foundational technology for AI application

development.

This paper provides a systematic analysis of MCP's technical architecture, examines its

implementation patterns across different use cases through empirical case study analysis, and

evaluates its potential impact on AI development practices. Our contributions include

comprehensive architectural analysis of MCP's core components and design principles with

theoretical grounding in protocol standardization literature, systematic evaluation of MCP's

potential benefits and limitations compared to existing approaches using structured comparison

frameworks, empirical analysis of early MCP server implementations through detailed case

studies, and assessment of adoption patterns and identification of research opportunities and

future development directions.

2. Background and Motivation

2.1 Related Work and Theoretical Framework

The challenge of standardizing integration protocols in software systems has been

extensively studied in the literature. Fielding's work on architectural styles for network-based

software architectures established the theoretical foundation for protocol design that balances

flexibility with standardization [14]. The success of protocols like Hypertext Transfer Protocol

(HTTP), Java Database Connectivity (JDBC), and Representational State Transfer (REST)

demonstrates that effective standardization requires careful balance between abstraction and

functionality, as evidenced by their widespread adoption and ecosystem development [13].

Previous attempts at AI tool integration have been framework-specific, with LangChain,

AutoGPT, and similar platforms each implementing proprietary approaches [11]. The Tool

Learning paradigm established by [8] provides theoretical grounding for understanding how AI

systems can effectively utilize external tools, while highlighting the challenges of inconsistent

integration patterns and the need for standardized interfaces to enable better tool composition

and reusability. Recent advances in tool-augmented language models have demonstrated the

potential for AI systems to effectively utilize external resources, but these approaches have

remained largely fragmented across different frameworks [9, 10].

2.2 Integration Challenges in Current AI Ecosystem

Modern AI applications require sophisticated integration with external systems to

provide value beyond text generation. These integrations typically include database access, API

consumption, file system operations, and real-time data processing. Prior to MCP, each AI

framework addressed these needs through framework-specific approaches, creating several

fundamental problems that hindered the development of robust AI applications.

The first major challenge is integration fragmentation, where different AI frameworks

implement incompatible integration patterns, meaning that a database connector developed for

LangChain cannot be used with AutoGPT or custom implementations. This forces developers

to rebuild similar functionality across projects, leading to substantial code duplication and

wasted development effort. The second challenge involves security inconsistencies, where each

framework implements its own security model for external integrations, leading to inconsistent

security practices and potential vulnerabilities. Development overhead represents another

significant barrier, as developers must learn framework-specific integration patterns and cannot

leverage integrations developed for other frameworks, significantly increasing learning curves

and development time. Additionally, limited reusability means that integration code developed

 Sevinj Karimova et al.: The Model Context Protocol: A Standardization Analysis for – Application ...

52

for one AI application cannot easily be reused in different applications, even when addressing

similar use cases.

The software industry has repeatedly demonstrated the value of standardization in

addressing integration challenges. HTTP enabled web interoperability, JDBC standardized

database connectivity, and REST provided consistent API design patterns [15]. The AI

application domain requires similar standardization to achieve interoperability, modularity,

security consistency, and developer productivity.

Figure 1. Comparison of fragmented vs. standardized integration approaches

Figure 1 illustrates the fundamental difference between current fragmented integration

approaches and the standardized approach proposed by MCP. In fragmented systems, each AI

framework maintains its own integration patterns, leading to incompatible solutions and

duplicated effort. The standardized approach enables shared integration components that can

be utilized across different AI applications, reducing development overhead and improving

consistency.

 3. Methodology

This research employs a mixed-methods approach combining theoretical analysis with

empirical case study evaluation. Our methodology consists of four primary components

designed to provide comprehensive evaluation of MCP's technical characteristics and practical

implications.

3.1 Architectural Analysis Framework

We conducted systematic analysis of MCP's technical architecture using established

protocol evaluation criteria including modularity, scalability, security, and extensibility. The

analysis framework draws from software architecture evaluation methods and protocol design

principles established in distributed systems literature [15]. This framework enables systematic

assessment of MCP's design decisions and their implications for practical deployment

scenarios.

3.2 Case Study Selection and Analysis

We selected MCP server implementations based on diversity of use cases, maturity of

implementation, and availability of documentation. The GitHub and Codacy MCP servers were

chosen as representative examples of different integration scenarios: GitHub representing

comprehensive API integration, and Codacy representing specialized tool integration. Selection

criteria included implementation maturity, documentation quality, functional diversity, and

UNEC Journal of Computer Science and Digital Technologies, vol.1, № 1, 2025

53

open-source availability for detailed analysis. Each case study involved detailed code analysis,

documentation review, and functional evaluation to understand implementation patterns and

practical deployment characteristics.

3.3 Comparative Evaluation Framework

We developed a structured comparison matrix evaluating MCP against existing

integration approaches across multiple dimensions including standardization, reusability,

security, development complexity, and theoretical advantages. The evaluation criteria were

derived from software engineering best practices and protocol standardization literature,

enabling systematic comparison of MCP's characteristics against existing approaches.

3.4 Industry Analysis Approach

We analyzed early adoption patterns and industry implementation reports to understand

MCP's practical deployment characteristics and ecosystem development trends. This analysis

included examination of early adopter implementations and assessment of industry feedback

regarding MCP's practical utility and deployment challenges.

 4. MCP Architecture Analysis

4.1 Core Design Principles and Core Components

The Model Context Protocol is built on several fundamental design principles that inform

its architecture and implementation. The protocol employs a client-server separation where AI

applications serve as clients connecting to MCP servers that provide access to external

resources and tools. This architectural approach delivers several key advantages including

modular development where components can be developed, tested, and deployed

independently, reducing system complexity and enabling specialized teams to focus on specific

integration domains. Independent scaling allows servers and clients to be scaled based on their

individual performance requirements, optimizing resource utilization across distributed

deployments. Clear security boundaries are established through well-defined interfaces

between clients and servers, enabling comprehensive security auditing and consistent access

control implementation.

The protocol maintains transport agnosticism by operating over various mechanisms

including studio, HTTP, and WebSocket connections, providing deployment flexibility for

different scenarios ranging from local development environments to distributed production

systems. MCP also implements structured resource abstraction, presenting resources in

standardized formats rather than requiring AI applications to understand external system

specifics, while capability-based discovery allows MCP servers to declare their capabilities to

clients through standardized introspection mechanisms.

MCP defines three primary component types that form the foundation of its functionality.

Resources represent structured, read-only data accessible through standardized interfaces,

including text content, binary data, structured JavaScript Object Notation (JSON) objects, and

dynamic content that changes based on parameters. Each resource is identified by a unique

Uniform Resource Identifier (URI) following consistent naming schemes and includes

comprehensive metadata such as content type, size, and modification time. Tools represent

computational functions that AI applications can invoke to perform actions or calculations, with

side effects and the ability to modify external system states. Tools are defined with structured

schemas including input and output specifications, execution metadata, and error handling

patterns. Prompts represent reusable prompt templates that can be shared across AI

applications, enabling standardization of common interaction patterns and best practices

through structured templates with variables, context instructions, and example interactions.

 Sevinj Karimova et al.: The Model Context Protocol: A Standardization Analysis for – Application ...

54

Figure 2. MCP Architecture Diagram showing Client-Server communication flow and interaction

between core components

The architectural diagram presented in Figure 2 demonstrates the structured communication

flow between MCP clients and servers, highlighting how the three core component types

interact within the standardized framework. The diagram illustrates how AI applications can

access multiple MCP servers simultaneously, enabling complex integration scenarios while

maintaining consistent interaction patterns.

4.2 Communication Model

The communication model employs JSON-RPC based protocols providing structured,

bidirectional interaction between clients and servers [1]. The protocol supports synchronous

request-response patterns for resource access and tool invocation, asynchronous notifications

for events, capability discovery through introspection, and comprehensive error handling with

structured error codes and messages. The connection lifecycle includes initialization phases,

capability negotiation, and graceful termination procedures, with support for both persistent

connections suitable for interactive applications and transient connections appropriate for batch

processing scenarios.

 5. Empirical Analysis: MCP Implementation Case Studies

To understand MCP's practical implementation patterns and real-world applicability, we

conducted detailed analysis of existing MCP server implementations. This section presents

findings from our examination of two significant early implementations: the GitHub MCP

Server and the Codacy MCP Server.

5.1 GitHub MCP Server Analysis

The GitHub MCP Server represents one of the most comprehensive early

implementations of the MCP protocol, providing seamless integration with GitHub's extensive

API ecosystem [5]. The server implements a comprehensive tool-based architecture that

exposes GitHub's API functionality through standardized MCP interfaces, providing tools for

repository management, issue tracking, pull request operations, and content manipulation. The

UNEC Journal of Computer Science and Digital Technologies, vol.1, № 1, 2025

55

implementation demonstrates MCP's capability to abstract complex API interactions into

consistent, discoverable interfaces that AI applications can leverage without requiring GitHub-

specific knowledge.

Our analysis identified that the server exposes tools across several functional categories

including repository operations such as creation, configuration, and access control, content

management including file reading, writing, and branch operations, collaboration features

encompassing issue creation, pull request management, and code review automation, and

metadata access providing repository statistics, contributor information, and project insights.

This comprehensive approach demonstrates how MCP servers can provide holistic access to

complex service ecosystems rather than limited, single-purpose interfaces. The GitHub MCP

Server implements sophisticated authentication mechanisms leveraging GitHub's OAuth

protocols to manage access permissions securely, maintaining proper separation between

authentication concerns and functional operations while allowing AI applications to interact

with GitHub resources while respecting user permissions and organizational access controls.

5.2 Codacy MCP Server Analysis

The Codacy MCP Server provides integration with Codacy's code quality and security

analysis platform, demonstrating MCP's applicability to specialized development tooling

scenarios [6]. The server focuses on providing AI applications with access to code quality

metrics, coverage data, and security information through Codacy's analysis platform, enabling

AI applications to retrieve comprehensive code analysis results, manage repository

configurations, and automate code quality assessments. This specialized focus demonstrates

how MCP servers can provide deep integration with domain-specific tools while maintaining

standardized interfaces.

The server provides sophisticated repository setup and management tools, allowing AI

applications to add repositories to Codacy for analysis, configure analysis parameters, and

manage ongoing monitoring. The Codacy server implements resource-based access patterns for

code quality data, enabling AI applications to retrieve analysis results, historical trends, and

comparative metrics through standardized resource interfaces. This approach demonstrates how

MCP's resource abstraction can provide structured access to complex analytical data while

hiding the underlying complexity of data processing and aggregation. The server demonstrates

effective patterns for wrapping existing REST APIs within MCP's abstraction layer, showing

how MCP servers can provide value-added functionality beyond simple API proxying,

including data aggregation, format standardization, and intelligent caching strategies.

5.3 Cross-Case Analysis and Implementation Patterns

Our comparative analysis reveals several important patterns of MCP's practical

deployment characteristics. Both servers demonstrate how MCP's standardized approach

enables AI applications to interact with different services through consistent patterns, with an

AI application that understands MCP tool invocation able to work with both GitHub and

Codacy servers without service-specific customization, validating MCP's core value

proposition of reducing integration complexity. Both implementations show consistent

approaches to authentication and authorization, leveraging each platform's native security

mechanisms while presenting unified security patterns to AI applications, potentially

significantly reducing security implementation complexity for applications integrating with

multiple services. The standardized interfaces demonstrated by both servers suggest substantial

potential for reducing development overhead, as developers can leverage a single MCP

interaction model to work with both platforms rather than learning separate APIs.

 Sevinj Karimova et al.: The Model Context Protocol: A Standardization Analysis for – Application ...

56

6. Current Ecosystem and Adoption Analysis

Anthropic provides official MCP implementations in Python and TypeScript/JavaScript,

along with comprehensive documentation and server templates for common integration

scenarios [1]. Early community engagement has begun, with the initial development of third-

party servers for services including the GitHub and Codacy integrations analyzed in our case

studies, as well as emerging servers for database systems and file system access. Major industry

adoption by platforms including Microsoft Copilot, Cognition, and Cursor demonstrates

growing recognition of MCP's potential as a foundational technology.

The protocol's architecture demonstrates several theoretical advantages that position it

well for widespread adoption. The standardized approach reduces the learning curve for

developers working across multiple AI integration scenarios, while the modular design enables

independent development and deployment of integration components. Security benefits emerge

from consistent authentication and authorization patterns, reducing the risk of implementation-

specific vulnerabilities that often arise in custom integration solutions.

Development efficiency improvements appear significant based on our case study

analysis, with MCP-based integrations demonstrating reduced integration-specific code

requirements compared to custom implementations. The standardized approach enables

developers to leverage existing MCP knowledge across different integration scenarios,

significantly reducing learning curves and development time while improving code

maintainability and reusability.

7. Use Cases and Comparative Analysis

7.1 Key Application Areas

Enterprise knowledge management emerges as one of the most promising use cases for

MCP implementation, enabling organizations to create servers that offer unified access to

document systems, databases, and internal application programming interfaces. This capability

allows AI systems to retrieve, process, and combine information from multiple enterprise data

sources while preserving security protocols and compliance requirements. The unified

framework facilitates the creation of AI assistants capable of navigating sophisticated

organizational information architectures and delivering informed responses.

Figure 3. MCP Integration Architectures for Enterprise Use Cases

Development automation benefits significantly from MCP's standardized approach to

integrating code repositories, infrastructure management APIs, and issue tracking systems, as

demonstrated by our GitHub MCP Server case study. This enables sophisticated development

assistants that can understand project contexts and automate workflows through consistent

interfaces.

UNEC Journal of Computer Science and Digital Technologies, vol.1, № 1, 2025

57

Research and analysis applications can leverage MCP's ability to provide unified access

to research databases, computational tools, and diverse data repositories, enabling researchers

to develop AI applications that aggregate literature, perform complex analysis, and generate

insights across multiple data sources through standardized patterns.

Figure 3 demonstrates how MCP can be deployed in enterprise environments to provide

unified access to diverse organizational resources. The architecture shows how multiple MCP

servers can provide specialized access to different enterprise systems while maintaining

consistent interfaces for AI applications, enabling comprehensive enterprise AI integration

scenarios.

7.2 Theoretical Advantages and Comparative Analysis

MCP offers several theoretical advantages over existing integration approaches,

confirmed through our case study analysis and architectural evaluation. The standardization

benefits provide consistent integration patterns that reduce learning curves and improve code

quality across projects, as demonstrated by the consistent patterns observed across GitHub and

Codacy server implementations. Security consistency ensures uniform protection across

different integrations through standardized authentication, authorization, and audit patterns,

potentially reducing security risks from ad-hoc integration approaches. The ecosystem growth

potential represents a significant advantage, as common standards enable development of

shared tools, libraries, and best practices that benefit all users, creating network effects that

accelerate innovation and reduce individual development costs.

However, MCP also presents certain limitations including protocol overhead in simple

integration scenarios, potential abstraction limitations for highly specialized integrations,

ecosystem maturity constraints, and initial learning investment requirements for development

teams.

Evaluation Dimension MCP Direct Integration Framework-Specific

Standardization Excellent (9/10) - Unified

protocol

Poor (3/10) - Unique

patterns

Moderate (6/10) -

Framework consistency

Reusability Excellent (9/10) - Cross-

client compatibility

Moderate (5/10) - Similar

contexts

Limited (4/10) -

Framework locked

Security Model Good (8/10) - Standardized

patterns

Variable (6/10) -

Implementation

dependent

Moderate (6/10) -

Framework dependent

Performance Good (7/10) - Protocol

overhead

Excellent (9/10) -

Minimal overhead

Moderate (6/10) -

Framework overhead

Development

Complexity

Moderate (7/10) - Learning

curve

High (4/10) - Individual

APIs

Moderate (6/10) -

Framework knowledge

Table 1. Comparative Analysis Matrix - MCP vs. Existing Approaches (Based on architectural

analysis and case study evaluation)

The comparative analysis presented in Table 1 demonstrates MCP's strengths in standardization

and reusability while acknowledging performance trade-offs inherent in protocol-based

approaches. The evaluation reveals that MCP provides significant advantages in scenarios

where multiple integrations are required, while direct integration may remain preferable for

simple, single-purpose applications. Framework-specific approaches occupy a middle ground,

providing some standardization within their ecosystems but lacking cross-framework

compatibility.

This analysis suggests that MCP's value proposition is strongest for organizations and

developers working with multiple AI integration scenarios, where the standardization benefits

outweigh the protocol overhead costs. The security advantages of consistent patterns become

 Sevinj Karimova et al.: The Model Context Protocol: A Standardization Analysis for – Application ...

58

particularly important in enterprise environments where security compliance and audit

requirements are critical considerations.

 8. Discussion and Future Directions

8.1 Adoption Patterns and Ecosystem Development

Early adoption patterns indicate strong interest from major industry players, with

implementations appearing across development tools, AI platforms, and enterprise software.

The rapid adoption by platforms like Copilot and Cursor suggests that MCP addresses genuine

market needs for standardized AI integration. However, successful widespread adoption will

require continued ecosystem development, including expanded server implementations,

enhanced tooling, and community growth.

8.2 Research Opportunities and Technical Implications

Future MCP development could address current limitations through several enhancement

areas including streaming capabilities for large data transfers, standardized caching

mechanisms, compression integration, and advanced connection management. The ecosystem

would benefit from enhanced development tools including visual designers for MCP server

configuration, debugging tools, automated deployment solutions, and comprehensive

monitoring capabilities.

Research applications represent particularly promising opportunities for MCP adoption,

with the standardized interface facilitating investigation into multi-agent AI systems, federated

learning approaches, AI safety research, and human-AI collaboration studies. The protocol's

structured approach to resource and tool access enables better study of AI behavior patterns and

failure modes while exploring how standardized interfaces affect interaction patterns and user

experience.

8.3 Limitations and Future Work

While our analysis demonstrates MCP's theoretical benefits, several limitations require

acknowledgment and future research. The protocol's effectiveness in highly specialized

integration scenarios remains to be validated through broader deployment. Long-term

characteristics under high-scale production workloads require empirical study. Additionally,

the impact of MCP adoption on existing development workflows and organizational practices

needs systematic investigation.

Future research directions include longitudinal studies of MCP adoption patterns,

comparative analysis of MCP versus emerging alternative standardization approaches,

investigation of MCP's role in multi-agent AI system architectures, and development of

enhanced optimization techniques for MCP implementations.

9. Conclusion

The Model Context Protocol represents a significant advancement in standardizing AI

application integration, addressing fundamental challenges in the current fragmented

ecosystem. Through systematic analysis combining theoretical evaluation with empirical case

study examination, we have demonstrated that MCP provides a foundation for substantial

benefits in terms of code reusability, development efficiency, and security consistency. Our

case study analysis of the GitHub and Codacy MCP servers provides concrete evidence of

MCP's practical capabilities and implementation patterns, demonstrating how the protocol can

successfully abstract complex API interactions while maintaining security and functionality

requirements.

The protocol's client-server architecture, comprehensive component model, and

structured communication patterns provide a solid foundation for building maintainable,

UNEC Journal of Computer Science and Digital Technologies, vol.1, № 1, 2025

59

scalable AI applications. Our architectural analysis confirms theoretical benefits including

standardization advantages, improved reusability, and enhanced security consistency.

However, challenges remain in ecosystem maturity, specialized use case support, and

organizational adoption barriers.

As AI applications become increasingly sophisticated and integration requirements grow

more complex, standardized protocols like MCP will likely play crucial roles in enabling

sustainable, secure, and efficient development practices. For organizations considering MCP

adoption, the protocol offers compelling theoretical benefits that justify initial investment

requirements, particularly for new projects or systems undergoing significant modernization.

Authors’ Declaration

The authors declare no conflict of interests regarding the publication of this article.

References

1. Anthropic (2024). Model Context Protocol Documentation.

https://www.anthropic.com/news/model-context-protocol

2. Anthropic (2024). Model Context Protocol Specification.

https://github.com/modelcontextprotocol/specification

3. Zhang, L., Wang, H., Chen, M., & Liu, X. (2025). Model Context Protocol (MCP):

Landscape, Security Threats, and Future Research Directions. arXiv:2503.23278.

https://arxiv.org/abs/2503.23278

4. Rodriguez, A., Kumar, S., & Thompson, J. (2025). A Survey of the Model Context

Protocol (MCP): Standardizing Context to Enhance Large Language Models (LLMs).

https://doi.org/10.20944/preprints202504.0245.v1

5. GitHub (2024). GitHub MCP Server. https://github.com/github/github-mcp-server

6. Codacy (2024). Codacy MCP Server. https://github.com/codacy/codacy-mcp-server

7. Qin, Y., Hu, S., Lin, Y., Chen, W., et al. (2023). Tool Learning with Foundation Models.

arXiv:2304.08354. https://doi.org/10.48550/arXiv.2304.08354

8. Qin, Y.; Liang, S.; Ye, Y.; Zhu, K.; Yan, L.; Lu, Y.; Lin, Y.; Cong, X.; Tang, X.; Qian, B.,

et al. (2023). ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world

API. https://doi.org/10.48550/arXiv.2307.16789

9. Schick, T., et al. (2023). Toolformer: Language Models Can Teach Themselves to Use

Tools. https://doi.org/10.48550/arXiv.2302.04761

10. Yao, S., et al. (2022). ReAct: Synergizing Reasoning and Acting in Language Models.

arXiv:2210.03629. https://doi.org/10.48550/arXiv.2210.03629

11. Chase, H. (2022). LangChain: Building applications with LLMs through composability.

https://github.com/langchain-ai/langchain

12. Mialon, G., et al. (2023). Augmented Language Models: a Survey. arXiv:2302.07842.

https://doi.org/10.48550/arXiv.2302.07842

13. Fielding, R., & Reschke, J. (2014). Hypertext Transfer Protocol (HTTP/1.1): Semantics

and Content. RFC 7231. https://doi.org/10.17487/RFC7231

14. Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures. https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

15. Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (3rd ed.).

Addison-Wesley Professional. ISBN: 978-0321815736

https://www.anthropic.com/news/model-context-protocol
https://github.com/modelcontextprotocol/specification
https://arxiv.org/abs/2503.23278
https://doi.org/10.20944/preprints202504.0245.v1
https://github.com/github/github-mcp-server
https://github.com/codacy/codacy-mcp-server
https://doi.org/10.48550/arXiv.2304.08354
https://doi.org/10.48550/arXiv.2307.16789
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.48550/arXiv.2210.03629
https://github.com/langchain-ai/langchain
https://doi.org/10.48550/arXiv.2302.07842
https://doi.org/10.17487/RFC7231
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

