

**SECTION:
MANAGEMENT**

*Gunay Kamran Musayeva,
Azerbaijan State University of Economics (UNEC)
ORCID 0009-0001-1204-6386
E-mail: gunaymusayeva@sabah.edu.az*

Trends in Education of the Fourth Industrial Revolution in Azerbaijan

Abstract

Innovations associated with the Fourth Industrial Revolution, particularly digitalization and artificial intelligence, are reshaping the substance and methodology of education in profound ways. In today's world, learning is no longer restricted to the physical boundaries of schools and universities, education is no longer restricted to the physical boundaries of schools and universities and has instead become accessible anywhere and at any time, thereby significantly broadening the educational environment. This evolving landscape is transforming the professional roles of teachers, enriching students' learning experiences, and redefining the principles of educational management. This article seeks to offer readers a comprehensive and systematic examination of the role that digitalization and innovative technologies play in contemporary education. It specifically explores the integration of digital tools and artificial intelligence applications into educational processes, considering both global trends and developments within Azerbaijan, and evaluates their influence on teaching, learning, and management practices. The overarching aim is to analyse the current situation within a scientific framework and to promote a deeper understanding of emerging directions and innovative transformations in the field of education. Through this analysis, readers will gain insight into how technological advancements shape teaching and management processes, facilitate the renewal of instructional methods, and support the effective use of digital resources in educational institutions.

Keywords: Education 4.0, digitalization, artificial intelligence, educational innovations, digital transformation

Introduction

The contemporary period signifies the onset of a new phase in human development - the Fourth Industrial Revolution. This revolution has introduced far-reaching changes across all sectors of society, including the field of education. Emerging approaches such as artificial intelligence, automation, robotics, and digital platforms have necessitated a reassessment of the effectiveness of traditional teaching models and have brought new conceptual perspectives into the educational process. Education today is no longer viewed simply as a mechanism for the transmission of knowledge; rather, it has evolved into a dynamic and adaptable ecosystem that nurtures creativity, innovation, and critical thinking. As the requirements of the global labor market continue to evolve, educational institutions are placing increasing emphasis on cultivating competencies such as problem-solving, digital literacy, and lifelong learning. This shift reflects a fundamental transformation of the educational paradigm - a movement toward the "Education 4.0" model.

The relevance of this topic stems from the growing necessity to maintain a balance between technological advancement and social adaptation, which has become a strategic priority in modern education policy. In this evolving landscape, the development of digital infrastructures within educational institutions, the strengthening of teachers' technological competencies, and the

deployment of AI-based management systems emerge as essential components of progress. Without these advancements, an education system that fails to keep pace with rapid technological change may become a significant barrier to broader social and economic development.

In the context of Azerbaijan, this issue carries particular importance. In recent years, notable initiatives have been undertaken to formulate digital education strategies, expand distance learning opportunities, and integrate online platforms into the teaching process. Despite these efforts, there remains a need for comprehensive scientific research to evaluate the actual impact of digitalization on teaching quality, teacher-student interaction, and educational management practices. In conclusion, examining the relationship between the Fourth Industrial Revolution and the Education 4.0 paradigm is of substantial theoretical and practical significance. Research in this area will help form a robust scientific foundation for shaping future education models and supporting the innovative development of teaching and learning processes.

Literature review

Today, the notion that 'education extends beyond the classroom and is accessible everywhere' has become an undeniable reality. Since the beginning of the 21st century, industry, the economy, and social life have undergone profound digital transformation. The Fourth Industrial Revolution - driven by artificial intelligence (AI), big data, the Internet of Things (IoT), and automation - is reshaping every sphere of society, including education. In this environment, adapting educational systems to the digital landscape is no longer optional; it has become an imperative. For this reason, examining the impact of the Fourth Industrial Revolution on education - particularly within the context of Azerbaijan holds strategic significance. Contemporary scholars refer to this transformative stage as 'Education 4.0', a concept that encompasses modern academic perspectives, theoretical approaches, and emerging trends associated with the digital transformation of learning.

UNEC Rector, Professor Adalat Muradov, in his reflections on *AI and the Future of Education*, underscores the transformative role of AI in shaping the trajectory of future educational systems. He emphasizes that AI significantly expands the potential for personalized learning by analysing each student's strengths, weaknesses, and learning pace, thereby enabling the creation of genuinely individualised educational pathways. Professor Muradov also observes that the future of education will increasingly incorporate interactive learning tools, with Virtual Reality (VR) and Augmented Reality (AR) making lessons more immersive, engaging, and dynamic. In addition, he highlights the supportive function of AI in teachers' professional activities: by automating routine administrative tasks, AI allows educators to devote more time and attention to their core mission teaching. According to Muradov, AI also strengthens accessibility and inclusivity in education by enabling the delivery of learning materials in multiple languages, thus helping to eliminate linguistic and social barriers for students. Ultimately, he argues that the advancement of AI should facilitate the development of competencies aligned with future labor market demands, allowing education systems to teach not only traditional academic subjects but also the skills required to thrive in an AI-driven environment. In this regard, artificial intelligence emerges as a key factor enhancing the quality, efficiency, and accessibility of modern education (Muradov, et.al, 2025).

In his book *The Fourth Industrial Revolution*, Klaus Schwab argues that the rapid convergence of technologies - including artificial intelligence, automation, and the Internet of Things - is reshaping not only industries and economies but education itself. Schwab maintains that educational institutions must move beyond traditional knowledge transmission and instead cultivate a culture of lifelong learning. He further stresses that educators must continuously adapt their teaching methods and assessment practices to keep pace with ongoing technological innovation (Schwab, 2016).

According to Firudin T. Aghayev and his co-authors in the article '*Trends and Prospects for IT Education in Industry 4.0*', the concept of 'Education 4.0' is designed to prepare flexible, creative, and technologically proficient professionals for the emerging industrial era. The contemporary education system is shifting from traditional theoretical knowledge delivery toward practical, problem-oriented learning, with a strong emphasis on integrating AI, AR, IoT, and cloud technologies

into the instructional process. Within this model, teachers function as facilitators, while students assume the role of active participants in their own learning. Ultimately, the core objective of 'Education 4.0' is to develop innovative and adaptive specialists capable of meeting the evolving demands of the modern labor market (Aghayev, Mammadova & Melikova, 2022).

In Azerbaijan, a range of initiatives illustrates the country's growing commitment to digital transformation and skills development in the context of the Fourth Industrial Revolution. Programs such as the "4IR Academy" and the National Digital Skills Program are designed to develop human capital that is better aligned with the demands of a rapidly changing labor market. Beyond improving technological literacy, these initiatives contribute to embedding lifelong learning into national education policy and practice. Taken together, these efforts signal a deliberate and forward-looking strategy to build an education system that is flexible, innovative, and sustainable in the era of the Fourth Industrial Revolution (4SIM, 2025).

According to the Asian Development Bank (ADB), the Fourth Industrial Revolution not only generates significant economic opportunities but also exacerbates the persistent challenge of skills mismatch in the labor market. Emerging technologies—particularly automation and artificial intelligence—are rapidly reducing the need for many traditional occupations while simultaneously giving rise to new roles that demand advanced technical and digital competencies. As a result, the disparity between workers' existing skills and the evolving requirements of employers continues to widen, underscoring the need for well-designed education, upskilling, and retraining initiatives. ADB specialists emphasize that vocational education and comprehensive reskilling programs should be prioritized, especially in regional and rural areas where access to such opportunities is often limited. Strengthening these pathways not only promotes social equity and economic inclusion but also fosters more adaptable, resilient, and lifelong learning-oriented education systems capable of meeting the demands of a rapidly transforming economy (Asian Development Bank, 2020). In a comparable way, Tikhonova and colleagues contend in "Education 4.0: Concept, Skills, and Research" that the skill set required in the Fourth Industrial Revolution is drastically changing. They contend that modern education systems must place greater emphasis on cultivating critical thinking, digital literacy, analytical competencies, and collaborative abilities. Embedding these skills into educational curricula helps nurture not only technologically proficient individuals but also creative, adaptable human capital capable of addressing complex, multidimensional challenges. The authors further observe that this shift fundamentally reconfigures the role of the teacher. Instead of functioning primarily as a transmitter of information, the teacher increasingly assumes the role of facilitator and mentor, guiding learners through personalized, interactive, and learner-centered educational experiences (Tikhonova et al., 2023). Regional research findings show that educational digitalization plays a vital role in achieving the Sustainable Development Goal on Quality Education (SDG 4). In the study "Digitalization and SDG4 in Azerbaijan," it is emphasized that although digital technologies improve inclusiveness and quality in education, structural barriers persist in some Azerbaijani regions. These challenges include unequal internet access, a shortage of modern educational equipment, and insufficient digital skills among teachers. The authors argue that to ensure digital inclusivity, national policy priorities must be clarified, and resources distributed equitably across regions (Rahmanov et al., 2025).

A review of the existing literature shows that Azerbaijan has achieved notable scientific and practical progress in integrating Fourth Industrial Revolution principles into its education system. Nevertheless, most available studies are confined to policy-level analyses and preliminary pilot outcomes. Robust empirical and comparative research capable of measuring the actual effects of digital transformation in education remains limited. Accordingly, future scholarship should focus on assessing how Education 4.0 initiatives influence teaching quality, teacher-student competencies, and social inclusivity, while also developing methodological frameworks that clearly define success criteria for technological integration. Sustained long-term monitoring and systematic data analysis would offer critical evidence to support national policy decisions and facilitate the sharing of best practices across the region (Ahadov et al., 2019). In conclusion, the findings of these studies

collectively underscore that the central mission of education in the era of the Fourth Industrial Revolution extends far beyond the simple integration of digital technologies. Rather, it involves a profound qualitative transformation of human capital. Aligning curricula with emerging skill demands, repositioning teachers as mentors and facilitators of learning, and ensuring equitable access to digital resources should therefore be considered strategic priorities within contemporary educational policy.

The role of digitalization in education

Reports from the U.S. Bureau of Economic Analysis show that technological progress boosts productivity largely through the substitution of human labor. In their widely cited study, Frey and Osborne evaluated 702 occupations based on their susceptibility to automation and concluded that approximately 47% of U.S. employment may be at risk over the next 10-20 years. This dynamic has intensified labor market polarization: high-income cognitive and creative occupations continue to grow, whereas middle-income routine jobs are steadily diminishing. These shifts highlight the need for strategic policy responses and robust social support mechanisms to help the workforce adapt to rapidly evolving technological realities.

Occupations with the Highest Risk of Automation		Occupations with the Lowest Risk of Automation	
Probability	Occupation	Probability	Occupation
0.99	Telemarketers	0.0031	Social workers specializing in mental health and substance abuse
0.99	Tax consultants	0.0040	Choreographers
0.98	Insurance underwriters (Automobile claims)	0.0042	Physicians and surgeons
0.98	Referees and other sports officials	0.0043	Psychologists
0.98	Court clerks	0.0055	Human resources managers
0.97	Restaurant and café waitstaff	0.0065	Computer systems analysts
0.97	Real estate brokers	0.0077	Anthropologists and archaeologists
0.97	Agricultural labor contractors	0.0100	Marine engineers and naval architects
0.96	Legal, medical, and executive secretaries and administrative assistants	0.0130	Sales managers
0.94	Couriers and messengers	0.0150	Chief executives

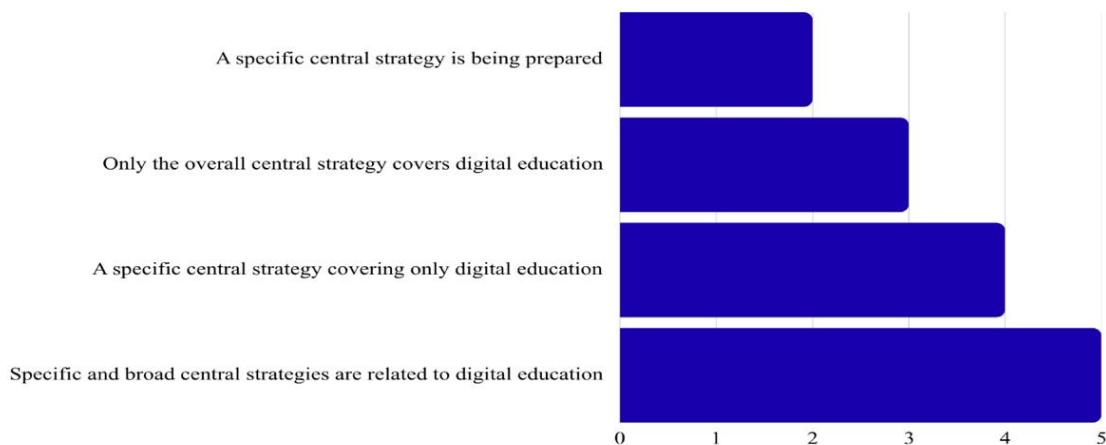
Table 1. Examples of occupations most and least amenable to automation

Source. Schwab, K. (2016). *The Fourth Industrial Revolution*. World Economic Forum: p.52

Automation is shaped not only by the capabilities of robots and algorithms, but also by a range of complementary factors, including:

Simplifying and structuring work Outsourcing and digital labor markets Monitoring and data quality

Occupations that are comparatively less exposed to automation in the near term are those that rely heavily on social interaction and creative competencies, especially roles that involve making decisions under uncertainty and generating novel ideas. Yet this relative security is unlikely to be


permanent. Even in fields such as writing-long considered a quintessentially creative profession-we are already beginning to see the emergence of automated systems capable of generating stories, signalling that we may be only at the outset of a broader transformation (Schwab, 2016). The convergence of physical, digital, and biological domains-which lies at the heart of the Fourth Industrial Revolution-creates substantial global opportunities to use resources more efficiently. The World Economic Forum's "Project Main Stream," designed to accelerate the shift toward a circular economy, illustrates that these opportunities go beyond merely reducing the environmental footprint of individuals, organizations, and governments. They also encompass the use of technology and intelligent system design to restore and regenerate natural ecosystems. The central aim of this approach is to move firms and consumers away from the traditional linear "produce-consume-dispose" model and toward a new industrial paradigm in which resources are managed in a regenerative and sustainable way. Such a model promotes the development of a more productive and resilient economy by recognizing and optimizing the interconnected flows of materials, energy, labor, and information. Achieving this transformation depends on four fundamental mechanisms:

Internet of Things (IoT) and Resource Efficiency	<i>The Internet of Things (IoT) and smart assets enable the tracking of material and energy flows, thereby ensuring higher efficiency across value chains. According to Cisco's projections, IoT technologies are expected to generate an economic benefit of 14.4 trillion USD in the coming decade, while optimizing supply chain processes could reduce waste and save 2.7 trillion USD. In addition, IoT-based solutions have the potential to reduce greenhouse gas emissions by 9.1 billion tons by 2020, which represents approximately 16.5% of global emissions. These facts suggest that IoT not only creates economic value but also plays an important role in promoting environmentally sustainable development.</i>
Digital Assets, Blockchain, and Accountability	<i>The democratization of information resources and the transparency of digital assets encourage accountability among citizens, corporations, and government institutions. In this process, blockchain technologies play a critical role by ensuring the integrity and reliability of data. For example, blockchain-based systems can authenticate land titles, thereby enhancing the accountability of landowners. Overall, digital transparency and reliable data circulation create a new phase in ecological governance and public accountability.</i>
Behavioral Changes and Social Innovations	<i>The growth of new data sources and increased transparency can also drive behavioral changes and social norm transformations. These shifts influence how individuals make decisions, interact with institutions, and perceive the world. Moreover, behavioral economics and psychology research helps governments better understand human decision-making. Accordingly, many governments, companies, and social organizations have launched experimental initiatives to evaluate the effectiveness of behavioral interventions. For instance, the "OPower" program uses behavioral insights to encourage citizens to reduce household electricity consumption by comparing their usage with that of their neighbors.</i>
New Business and Organizational Models	<i>Digital technologies form the foundation for new business and organizational models, fostering innovation in value creation and sharing processes. Through advanced logistics tools, digital platforms enhance resource utilization efficiency, facilitate resource sharing and leasing mechanisms, and strengthen circular economy practices by increasing asset turnover. Furthermore, such models promote "upward scalability," making businesses more flexible while ensuring sustainable resource use. These models not only enhance economic efficiency but also contribute to long-term environmental sustainability.</i>

Table 2. Digital technologies and sustainable resource use

Source: Schwab, K. (2016). The Fourth Industrial Revolution. *World Economic Forum*

The evidence on how automation affects different professions demonstrates that renewing and adapting the education system is no longer optional but necessary. In recent years, artificial intelligence has emerged as a central pillar of digital education. Generative AI tools-such as ChatGPT, Duolingo Max, and Khanmigo-are increasingly being integrated into learning environments to support more personalized learning pathways and to assist educators in tasks such as assessment, feedback provision, and instructional planning (Carr, 2023; Google, 2022). Nevertheless, the integration of these technologies also brings a range of ethical, social, and legal challenges. Biased AI algorithms have the potential to reinforce existing social inequalities and may even erode the trust that underpins effective teacher-student relationships (Kolkman, 2020). Enhancing digital infrastructure in education-including ensuring high-speed internet connectivity in schools, reducing digital inequality, and expanding access to high-quality devices-has become a central priority in many countries' digital education strategies. In pursuit of these goals, the OECD launched a major initiative in 2023 titled "Resourcing School Education for the Digital Transformation of Teaching and Teachers' Readiness for the Future". The project aims to develop a comparative data framework for digital education, examine countries' experiences, and support the formulation of evidence-based policy decisions in this area (OECD, 2025). The expansion of digital education and its rising prominence in education policy have become increasingly evident in recent years. Although the COVID-19 pandemic accelerated the digitalization of teaching and learning processes, the rapid advancement of generative artificial intelligence has created a new imperative to reevaluate existing education strategies and adapt them to emerging technological realities (OECD, 2023, p. 42). In this context, many countries have introduced central-level strategies focused specifically on digital education to guide ongoing and future reforms. The diagram 1 offers a visual overview of the types of strategies adopted at the national level and their current stage of implementation.

Diagram 1. Central-level strategies for digital education

Source. OECD. (2025). *Policies for the digital transformation of school education: Evidence from the Policy Survey on School Education in the Digital Age* (OECD Education Working Paper No. 328), p.12.

Diagram 1 illustrates that central-level digital education strategies vary considerably across countries. The colours in the chart indicate both the type and the stage of these strategies: "combined and broad central strategies" refer to national strategies that incorporate digital education as one component; "specialised strategies" denote those dedicated exclusively to digital education; "general strategies that partially address digital education" represent cases where digital education is embedded within broader policy frameworks; and an additional category captures specialised strategies that are currently under development. Overall, the chart presents data from 37 jurisdictions—that is, 37 distinct education governance systems. These jurisdictions are grouped as follows:

- Eighteen countries - Austria, Colombia, Finland, France, Ireland, Korea, Lithuania, Luxembourg, the Netherlands, Norway, Portugal, Slovakia, Slovenia, Spain, New South Wales

(Australia), Wales (United Kingdom), Croatia, and Singapore have implemented both specialised and broad central strategies for digital education.

- Ten countries - Chile, Denmark, Estonia, Greece, Iceland, Japan, Sweden, England (United Kingdom), Bulgaria, and Romania address digital education solely within the framework of their general central strategies.
- Five countries - Germany, Italy, New Zealand, the Flemish Community (Belgium), and the French Community (Belgium) maintain a dedicated central strategy exclusively focused on digital education.
- Four countries - Poland, Northern Ireland (United Kingdom), Scotland (United Kingdom), and Israel are in the process of developing specialised strategies for digital education.

Based on the results of the policy survey, all participating countries have accorded digital education a prominent role in strategic documents outlining the main directions of educational reform. In some countries, this is achieved through standalone strategies specifically dedicated to digital education, whereas in others, it is integrated within broader, general education strategies (OECD, 2025). In this context, one influential international model guiding the development of digital education is the World Bank's framework, Key Shifts Required in Digital Transitions in Education and Skills Development. The framework highlights that the digital transformation of education and skills systems depends not only on technological innovation but also on fundamental changes in governance, policy, and pedagogical practices. It emphasizes that success in digital transformation is not achieved solely through the provision of technological infrastructure, but through the implementation of a systematic and sustained reform approach. The table below organizes these changes according to key directions, illustrating the distinctions between previous and emerging paradigms.

Shift Mindsets and Actions	Previous approach (“FROM”)	New direction (“TO”)
Strategic management and policy formulation	Focus on short-term and ad hoc digital initiatives	Leading a systematic, purposeful and learning-skill development-centered approach
Investment and technology infrastructure	Investing in fragmented and disconnected digital “frills”	Investing in integrated digital “cores” that support teaching, learning and governance
Education and innovation orientation	Application of technology-centric approaches	Application of education, skills and learning-centric approaches

Table 3. Key trends in the digital transformation of education and skills

Source. World Bank (2023). *Digital Transformation in Education and Skills Development: Key Shifts for Systems Change*. Washington, DC: World Bank.

Previous approach (“FROM”)	New direction (“TO”)
Inequality and rent-seeking systems	Systems based on equality, transparency and accountability
Outdated and Outdated Learning Models	Modern, Flexible and Future-Oriented Learning Models
Weak and Fragile Education Systems	Resilient, Flexible and Emergency-Ready Education Systems

Table 4. Shift Outcomes

Source. World Bank (2023). *Digital Transformation in Education and Skills Development: Key Shifts for Systems Change*. Washington, DC: World Bank.

Digital transformation in education extends beyond the mere adoption of new technologies; it represents a comprehensive reform that interweaves policy, infrastructure, and pedagogy. Its central aim is to shift away from short-term, technology-driven approaches toward systematic, integrated, and learner-centered strategies. Within this framework, strategic planning emphasizes long-term, purpose-driven initiatives focused on skill development; investments target integrated digital infrastructures that support teaching, learning, and governance; and educational practices prioritize the cultivation of learning, skills, and innovation rather than the simple application of technology. Consequently, education systems become equitable, transparent, and resilient; outdated learning

models are replaced with modern, flexible, and future-oriented approaches; and weak or fragile systems are strengthened to be adaptable and resilient in emergency situations. This process ensures the development of inclusive, flexible, and skill-oriented education systems capable of addressing current and future challenges.

The Impact of Digitalization on Education in Azerbaijan

In Azerbaijan, the impact of digitalization on education has been primarily oriented toward enhancing the experiences of students and teachers, rather than focusing solely on technology, positioning it at the intersection of technological innovation and pedagogical development within the higher education sector. The Social-Economic Development Strategy of the Republic of Azerbaijan for 2022-2026 further highlights the development of innovative and digital skills in higher education as a strategic priority (E-qanun, 2022). The incorporation of technology into education has prompted educators to rethink how they teach and to adjust curricula to better suit the needs of today's learners. This shift has transformed the ways teaching, learning, and research are conducted, creating an increased emphasis on building the skills and capabilities of both students and teachers (Rampelt et al., 2019). The main objective of digital transformation in education is to improve the student experience. In this context, UNEC's EDUMAN-E-University model represents an important advancement. Through this initiative, electronic textbooks and grade books were introduced, a 24-hour e-library was made available, and the management of teaching and administrative processes was digitized to streamline operations.

During the period when schools in Azerbaijan were closed due to the pandemic, the Ministry of Education launched an online learning platform. According to Minister of Education Emin Əmrullayev, roughly one year after the start of the pandemic, 1,442,000 students had registered on the platform. Given that the total student population in the 2020 - 2021 academic year was 1,569,000, this means that around 92% of students were registered, leaving approximately 127,000 students who did not engage with the online platform. Although a large number of students and teachers registered on the platform, not all were active users. As reported by Minister Emin Amrullayev in 2021, around 1,170,000 students accessed the platform at least once per week. Overall, approximately 68% of students and teachers actively participated in online learning, while the remaining 550,000 were not regularly engaged in educational activities (Amrullayev, 2021). Participation in online education was notably lower among students residing outside major cities. In Baku, Ganja, and other large urban centers, 74–75% of students attended online lessons at least once per week. Given that the Absheron Peninsula is home to roughly 40% of the country's student population, about 470,000 of the 627,000 students there engaged in online learning. In contrast, in other regions, approximately one-third of students faced difficulties in consistently accessing online education (State Statistical Committee of the Republic of Azerbaijan, 2021).

One of the key challenges to online education was the limited availability of physical infrastructure. In 2020, 66% of households had internet access via a modem, increasing to 71% in 2021. Nevertheless, during the pandemic, roughly 30% of homes remained without internet connectivity. At the same time, only about 75% of households owned a computer, which meant that many students had to rely on mobile phones to participate in lessons. Furthermore, the speed and quality of internet connections significantly affected students' ability to engage with the online platform effectively (State Statistical Committee of the Republic of Azerbaijan, 2021). Overall, these data suggest that issues with internet quality and coverage posed a major barrier to students' participation in online education (Mehralizadeh, 2024). These challenges existed even prior to the pandemic, and despite ongoing government efforts to improve internet access - especially in rural areas substantial progress had yet to be achieved.

Indicator	Number	Explanation
Total number of students (2020–2021)	1.569.000	Nationwide
Students registered on the online platform	1.442.000	92% of students
Students not using the platform	127.000	8%
Total number of teachers	150.000	85% of teachers registered
Teachers not using the platform	22.000	15%
Students and teachers who are active users	1.719.000	Those who access the platform at least once a week
Students and teachers who are not active users	550.000	Those who do not participate in educational activities
Students participating in online classes (Baku and large cities)	74–75%	At least once a week
Percentage of students with internet access at home	66–71%	2020–2021
Percentage of students with computer access at home	75%	During the pandemic
Population connected to the 3G network	80%	Less in the regions, more in Baku

Table 5. Educational Coverage During the Pandemic

Source. Mehralizadeh, F. (2024). *The impact of the pandemic on educational outcomes in Azerbaijan*. Baku Research Institute.

The education sector is among the most innovative fields, playing a crucial role in fostering an innovative environment and enhancing the overall competitiveness of the economy. Modern education systems are increasingly built on technological innovations that leverage information, computer, and telecommunication technologies. A defining characteristic of contemporary global education is its ongoing process of modernization, aimed at ensuring high-quality learning within the context of mass education. In developed countries, education systems adapt to global trends, guided by national strategies designed to enhance educational quality. In Azerbaijan, the State Strategy on the Development of Education, approved by President Ilham Aliyev, fulfills a similar role by promoting the integration of innovative practices within the national education system. The trends that ensure the application of innovations in education are as follows:

- Humanization of education;
- High demands on children's education and the development quality of the younger generation;
- Attention to cultural and moral values;
- Competitive environment among educational institutions.

When developing an innovation program for an educational institution, it is important to forecast the expected outcomes. The administration, together with an initiative group, should then implement a goal-oriented, comprehensive program. This program should encompass both organizational measures and the sequential stages required for effective innovation implementation.

One of the earliest applications of artificial intelligence in education was developed by Sidney Pressey. His approach went beyond merely evaluating students' test results in real time; it also supported their acquisition of essential knowledge. Pressey highlighted that AI could benefit teachers by freeing them from the routine task of grading, allowing them to focus more on direct interaction with students. Another important contribution came from Burrhus Skinner, who, building on his research on operant behavior, introduced the concept of "operant learning." During World War II, Skinner worked on a project that employed pigeons to guide aircraft fire. His educational system enabled students to record their responses on a rotating mechanism, which could then be compared with correct answers, illustrating the potential of automated feedback in learning.

Although the integration of artificial intelligence (AI) into the educational process in Azerbaijan is still in its early stages, several initiatives are underway. Efforts include the establishment of digital schools, online learning platforms, and personalized learning systems. The Ministry of Education, along with other institutions, is developing projects that leverage AI to optimize curricula, analyze student performance, and create individualized learning programs. Platforms such as the Virtual

School provide students with tailored learning resources, track their progress, and recommend suitable content. AI-based educational systems in Azerbaijan also facilitate personalized learning, streamline the assessment process, and offer detailed insights into student development. Nonetheless, challenges remain, including limited technical infrastructure, insufficient funding, and the need to enhance teachers' competencies in using these technologies. Furthermore, issues concerning data privacy and ethical considerations require careful attention.

Overall, AI holds considerable potential to optimize the educational process, improve learning quality, and support more personalized approaches to education. Azerbaijan can harness international experiences, strengthen its digital infrastructure, and enhance teachers' technological competencies to make meaningful progress in realizing this potential (Hamidov, 2024). Globalization and rapid technological advancements are driving higher education systems to fundamentally rethink their traditional models. In particular, the emergence of AI technologies challenges universities to reconsider their operational frameworks. Integrating AI into the educational environment represents not merely a technical innovation but also a pedagogical and methodological transformation. These technologies enable education to adapt to the individual characteristics of learners, personalize the learning process, optimize knowledge acquisition, and alleviate teachers' workloads.

The traditional university model, largely shaped during the First Industrial Revolution, has remained relatively unchanged for a long time. However, within the context of the Fourth Industrial Revolution, this model struggles to meet contemporary demands. While higher education institutions must prepare graduates to meet current labor market needs, focusing exclusively on present requirements can hinder innovation, as the labor market reflects the current state rather than guiding future development. Consequently, the primary goal of education is not only to fulfill immediate market demands but also to cultivate leaders capable of adapting to future technological and social transformations. In this context, one of AI's most significant advantages is its capacity to enable personalized learning. Digital tools and intelligent platforms facilitate the creation of individualized learning paths tailored to each student's pace of knowledge acquisition, learning style, and areas of interest effectively reviving the historical mentor-student relationship in a modern technological form. AI provides students with 24/7 access to interactive learning environments, allowing them to review lessons and receive guidance outside the classroom. Experts emphasize that AI is intended not to replace teachers but to enhance their instructional practice. In other words, the most successful educators of the future will be those who can use AI creatively and effectively to enrich the learning experience.

The Azerbaijan State University of Economics (UNEC) is widely recognized as the leading institution in the country in adopting innovative practices within higher education. Rector Adalat Muradov emphasizes that the current model of higher education has exhausted its potential, highlighting the necessity of a new university concept. He emphasizes the need for a new university paradigm that moves beyond the traditional, instructor-centred classroom, where lecturers primarily transmit information and students remain passive recipients. According to Muradov, the transformative dynamics of the Fourth Industrial Revolution necessitate a shift toward flexible, student-centred, and competency-oriented models of teaching and learning. He maintains that

the future of higher education lies in designing individualized learning pathways and constructing environments that actively support student agency and engagement. Although the educational system historically struggled to maintain personalized learning due to demographic pressures and limited resources, contemporary advances in artificial intelligence and digital technologies now make such approaches attainable once again. Professor Muradov views artificial intelligence as a pivotal component of this transformation. AI-enabled tools, functioning as "virtual academic assistants," can support learners outside the classroom by reinforcing subject knowledge, providing tailored feedback, and assisting with analytical tasks. Nevertheless, he stresses that technological adoption alone is insufficient; its effectiveness depends on the alignment with sound pedagogical principles and an overall rethinking of instructional design. He further cautions that universities should not confine themselves to training specialists merely for the current labour market.

Such a narrow orientation, he argues, may hinder long-term educational progress and suppress innovation capacity. Instead, higher education institutions must cultivate professionals capable of addressing emerging societal needs and contributing to the creation of new domains of knowledge. Within this broader mission, Muradov positions artificial intelligence as a strategic instrument that enhances teaching quality, fortifies the university's forward-looking role, and supports its capacity to lead national educational development. In his view, the future of higher education lies in constructing individualized educational pathways and cultivating environments that place the learner at the centre of the pedagogical process. Although the principles of personalized learning were historically constrained by population growth and limited educational resources, the expansion of AI and digital technologies now makes their restoration feasible. AI is envisioned as a form of "virtual assistant" capable of supporting students beyond the classroom by reinforcing learning, facilitating analytical tasks, and contributing to the consolidation of knowledge. Nevertheless, Muradov underscores that technological tools alone cannot guarantee educational progress; their impact depends on being embedded within sound pedagogical strategies. Furthermore, he cautions against a narrow focus on preparing graduates solely to satisfy current labor-market demands, noting that such an approach risk inhibiting innovation and stalling the long-term evolution of higher education. Instead, he asserts that universities bear a broader mission: to educate professionals who can anticipate emerging societal needs and contribute to the creation of new knowledge domains. Within this framework, AI is understood not only as a mechanism for improving instructional quality but also as a strategic asset for strengthening the university's capacity to shape future developments proactively (UNEC nəzdində Sosial-İqtisadi Kollec, 2025). Thus, improving the quality of education in Azerbaijan and integrating contemporary technologies into this sphere constitute key priorities within the state's long-term development agenda. The incorporation of digital transformation and innovative practices into the education system necessitates not only pedagogical and methodological modernization, but also a comprehensive and coherent normative-legal framework. In this context, the laws, national strategies, state programs, and conceptual documents adopted in recent years have established the fundamental regulatory basis for the effective deployment of modern technologies in the education sector (Muradov, et.al, 2025)

The legal foundations governing the use of digital technologies in education in Azerbaijan are primarily anchored in the Law of the Republic of Azerbaijan *on Education* (2009), which remains the central legislative instrument shaping this domain. The law establishes the fundamental principles for integrating modern and digital technologies into the teaching–learning process and outlines the state's responsibility to enhance the quality of educational services through technology-driven reforms. It formally recognizes the need to expand technology-supported instructional formats including distance, blended, and electronically mediated learning and sets normative requirements for their implementation. Furthermore, the law provides a regulatory framework for the deployment of digital platforms, the development and use of electronic educational resources, and the creation of an integrated information environment across higher, secondary, and general education institutions (Azərbaycan Respublikası Elm və Təhsil Nazirliyi, 2009). In addition, the "State Strategy on the Development of Education in the Republic of Azerbaijan" (2013-2025) and the State Program for its implementation specify the priority directions of digital transformation. The strategy identifies tasks such as creating an electronic educational environment, expanding the digital resource base, developing distance learning models, and preparing AI-based personalized learning tools. Moreover, the *State Strategy for the Development of Education in the Republic of Azerbaijan* (2013-2025) and the corresponding State Program for its implementation articulate the strategic priorities guiding digital transformation within the national education system. These policy documents outline a set of long-term objectives aimed at modernizing educational infrastructure and strengthening technological capacity. Among their key provisions are the establishment of a comprehensive electronic educational environment, the expansion and systematic enrichment of digital learning resources, and the advancement of distance and blended learning models in line with international standards. In addition, the Strategy underscores the importance of developing personalized learning

instruments supported by artificial intelligence, thereby promoting learner-centered pedagogical practices and facilitating the transition toward data-driven and adaptive education (E-qanun, 2015). The “Digital Development Concept of the Republic of Azerbaijan” serves as another significant policy document reinforcing the country’s commitment to educational digitalization. It outlines a vision for enhancing digital infrastructure within educational institutions, scaling e-government and e-education services, and deploying cloud-based and artificial intelligence-supported management systems. The concept further delineates the regulatory mechanisms necessary for integrating digital technologies into institutional practice, including the establishment of technical standards, cybersecurity requirements, and protocols for safeguarding educational data. Together, these legal and strategic documents illustrate a systematic and forward-looking approach to digital transformation in Azerbaijan’s education system, ensuring that technological innovation is not only adopted but also governed through clear, consistent, and future-oriented policy instruments (E-qanun, 2025a).

The *Artificial Intelligence Strategy of the Republic of Azerbaijan for 2025-2028* outlines a comprehensive national agenda aimed at building a sustainable and competitive AI ecosystem. The document places particular emphasis on strengthening collaboration between governmental institutions and the private sector, enhancing the country’s scientific and academic capacity, and stimulating a dynamic environment for startups and technological innovation. A central component of the strategy is the promotion of responsible and ethically grounded AI development. This includes safeguarding human rights, ensuring robust data-protection standards, and preparing a workforce equipped with the digital and analytical skills required in an AI-driven economy. The strategy also calls for expanding educational initiatives and deploying advanced computational and cloud-based infrastructures capable of supporting large-scale AI applications. In addition, the implementation of pilot projects, measures to encourage business activity and entrepreneurship, targeted support for scientific research, and broad public awareness campaigns are envisaged as key mechanisms for ensuring the effective and socially beneficial integration of AI technologies across the country (E-qanun, 2025b). Taken together, these legislative and strategic documents form a multilayered and coherent regulatory environment for advancing digitalization and AI adoption in Azerbaijan’s education sector. The coordination of legal acts, strategic policies, and technical standards enables the continued modernization of the education system and supports its convergence with global best practices. Ultimately, this legal architecture strengthens the transformation of educational institutions through digital technologies and serves as a critical mechanism for enhancing educational quality nationwide.

Perspectives for the application of technologies in the field of education

Over the past five decades, technological developments have largely been shaped by human social and economic needs, reflecting a reciprocal relationship between society and innovation. Notably, the advent and rapid expansion of the Internet have had a transformative effect on education, mirroring its impact across other sectors. In this context, Gerstein (year) proposed a framework categorizing the evolution of educational practices into four stages: Education 1.0, 2.0, 3.0, and 4.0. These classifications are widely employed to describe the historical progression of educational systems, highlighting shifts in pedagogical approaches alongside technological advancement. Broadly, these stages encapsulate:

Education 1.0 - This stage corresponds to the traditional model of instruction, in which the classroom setting and conventional teaching methods form the core of the learning process. The primary

objective during this phase is the acquisition of foundational knowledge and the cultivation of essential skills.

Education 2.0 - This stage marks the initial integration of information and communication technologies (ICT) into the educational process. The use of computers, the Internet, and other digital tools introduces a more interactive and dynamic learning environment, enhancing student

engagement and participation.

Education 3.0 - This stage is characterized by the personalization of learning, in which students transition from passive recipients of knowledge to active participants and from their educational experiences. Technological tools facilitate learning pathways that are tailored to individual interests, abilities, and needs, promoting autonomy and engagement in the learning process.

Education 4.0 - This stage emerges alongside the principles of Industry 4.0 and embodies a comprehensive digital transformation within education. Advanced technologies, including artificial intelligence, big data analytics, and virtual and augmented reality, are increasingly integrated into the learning environment. This approach extends beyond the mere acquisition of knowledge, placing equal emphasis on cultivating higher-order competencies such as critical thinking, creative problem-solving, and collaborative skills.

Criteria	Education 1.0	Education 2.0	Education 3.0	Education 4.0
Teachers	Teachers who act as the main source of information.	Teachers who collaborate with students, parents, and other stakeholders to create a more effective learning environment.	Teachers who contribute to the formation of new knowledge through joint collaboration.	Teachers who share knowledge with portals and software that enable learning anywhere and anytime.
Students	Passive learners who acquire knowledge only through listening.	Students who take responsibility for their own learning and are more actively involved in the process.	Students who have an individual learning plan, creating new ideas and products.	Students who constantly improve their learning plans using virtual platforms and quickly adapt to updated technologies.
Educational institutions	Traditional educational institutions where teaching and learning are carried out and assessed by a single institution (school or university).	Educational institutions that expand student interaction opportunities and support exchange programs.	Institutions that are not limited to universities and schools, but also include courses, training centers and companies.	A global educational environment where there are no regional and international borders, all levels of education are supported
Learning method	The transfer of knowledge from teacher to student is carried out through presentations, assignments, written and oral tests.	Team-based learning based on teacher-student and student-student collaboration.	Personalized learning, where online resources become a core part of teaching.	Students' creative learning using any resources; the ability to teach at any time without interfering with daily life and work activities.
Alumni (graduates)	Employees who need retraining, with limited creativity.	Employees who have superior knowledge and skills compared to the previous stage, although they may have some shortcomings in the work process.	Professionals who focus on the creation of new knowledge, continuously proposing new business models.	Creative and agile professionals who focus on innovation and can continue to apply innovations.

Table 6. General description of educational periods

Source: Yadigarova, Z., Mikayilov, M., Ahmadov, E., & Salehli, F. (2024). Research on cybersecurity issues of cloud-based e-learning system

In contemporary education, Education 3.0 is characterized by expansive, inter-organizational, and cross-cultural learning opportunities. Within this model, students move beyond the role of passive knowledge consumers to become active creators of shared knowledge products. Furthermore, the use of social networks and collaborative engagement across diverse disciplines significantly enhances the learning experience, fostering both creativity and collective problem-solving. In summary, the

Education 4.0 paradigm seeks to shift students from passive recipients of knowledge to active, creative agents within a technology-enhanced, learner-centered environment. This approach enables learners to explore, experiment, and direct their own educational pathways, cultivating professionals with adaptable and flexible thinking capable of responding to the rapidly evolving demands of the future. The introduction of Education 4.0 also brings both opportunities and challenges to the Azerbaijani education system. The integration of modern technologies, personalized learning strategies, and interactive pedagogical methods has the potential not only to improve the overall quality of education in schools and universities but also to foster the development of students' creative, analytical, and critical thinking skills (Yadigarova and et. al., 2024). In this context, the formulation and implementation of strategies aligned with the principles of Education 4.0 are expected to foster the development of digitally literate, innovative, and lifelong learning-oriented professionals in Azerbaijan. Drawing on the findings of my research, a set of recommendations has been developed to guide the effective integration of Education 4.0 within the national education system.

1.	Technology integration and digital learning environments	Artificial intelligence, VR/AR technologies, cloud-based platforms and interactive software should be applied in schools and universities, and distance and hybrid education opportunities should be expanded. This will create a flexible learning environment in line with the requirements of the Education 4.0 concept, creating the opportunity for students to learn at any time and place.
2.	Personalized learning and open educational resources	Learning plans should be developed in accordance with the individual interests and abilities of students, and the selection and management of learning content should be entrusted to them. The use of open educational resources (OER) and digital libraries should ensure the borderlessness of learning.
3.	Redefining the role of teachers	Teachers should act not only as knowledge transmitters, but also as facilitators, mentors and analytical decision-makers. For this, appropriate training and certification programs should be provided to teachers to increase their technological and pedagogical skills.
4.	Developing creative and critical thinking skills	Project-based, interactive and gamified methods should be applied in the learning process, and students should be given the opportunity to analyze problems, find creative solutions and operate with multidisciplinary approaches.
5.	Promoting global collaboration and teamwork	Students should gain a global perspective and teamwork skills through international exchange programs, online collaboration platforms, and interactive forums. This will strengthen students' knowledge sharing and collaborative skills with their peers.
6.	Digital literacy and lifelong learning	Students should be taught digital ethics, data security, and critical information analysis skills, and lifelong learning habits should be encouraged, and the ability to continuously improve and think flexibly should be developed.

Table 7. Proposals for the implementation of Education 4.0 in the Azerbaijani education system

Source. Ministry of Science and Education of AR

Conclusion

In conclusion, the Fourth Industrial Revolution, digitalization, and artificial intelligence are transforming both global and Azerbaijani education systems, shifting them from traditional knowledge delivery models toward flexible, learner-centered ecosystems. Education 4.0 prioritizes personalized learning, critical thinking, creativity, and digital literacy, enabling students to actively manage their educational trajectories and prepare for evolving labor market demands. In Azerbaijan, notable advancements have been achieved through initiatives such as digital schools, online learning platforms, and AI-driven educational tools; however, challenges persist, including limited infrastructure, unequal access to the Internet, and gaps in teachers' technological competencies. A robust legal framework, state strategies, and targeted programs provide the foundation for the integration of digital technologies, ensuring alignment with international standards. The deployment of AI not only enhances teaching quality and facilitates personalized learning but also streamlines

administrative processes, though effective implementation remains dependent on pedagogical adaptation. The transition toward Education 4.0 further underscores the importance of lifelong learning, inclusivity, and the cultivation of human capital capable of responding to rapid technological and social change. Overall, the integration of digital tools and innovative technologies in Azerbaijan offers significant opportunities to elevate educational quality, foster creativity, future-ready professionals. Sustained investment in infrastructure, teacher training, and equitable access will be essential to fully realizing the transformative potential of Education 4.0.

Reference

1. Aghayev, F. T., Mammadova, G. A., & Melikova, R. T. (2022). *Trends and Prospects for IT Education in the Environment Industries 4.0. Problems of Information Society*, 97-103.
2. Ahadov, A., et al. (2019). *A summary of adapting Industry 4.0 vision into engineering education in Azerbaijan. IOP Conference Series: Materials Science and Engineering*.
3. Asian Development Bank. (2020). *Harnessing the fourth industrial revolution through skills development in developing Asia*. Asian Development Bank. <https://www.adb.org/publications/fourth-industrial-revolution-skills-development-synthesis>
4. Azerbaycan Cumhuriyeti Bilim ve Eğitim Bakanlığı. (2009). 'Eğitim Hakkında' Azerbaycan Cumhuriyeti Kanunu. <https://edu.gov.az/az/esas-senedler/tehsil-haqqinda-azerbaycan-respublikasinin-qanunu>
5. Carr, J. (2023). *The future of digital learning: Trends and insights*. Routledge.
6. Center for Analysis and Coordination of the Fourth Industrial Revolution (4SIM). (2025). *Launch of the "National Program" within the "4IR Academy"*. <https://4sim.gov.az/en/news/405/4si-akademiyasi-cercivesinde-milli-proqrama-start-verilib>
7. Əmrullayev, E. [Emin Əmrullayev]. (2021, January 22). *Briefing by the Minister of Education [Video]*. YouTube. <https://www.youtube.com/watch?v=0XajW3ATXvo>
8. E-kanun. (19 Ocak 2015). 'Azerbaycan Cumhuriyeti'nde Eğitimin Geliştirilmesine İlişkin Devlet Stratejisi'nin Uygulanmasına Dair Eylem Planının Onaylanması Hakkında Azerbaycan Cumhuriyeti Cumhurbaşkanı'nın Kararnamesi. https://frameworks.e-qanun.az/29/f_29145.html
9. E-kanun. (22 Temmuz 2022). 'Azerbaycan Cumhuriyeti'nin 2022-2026 Yıllarında Sosyo-Ekonominik Kalkınma Stratejisi'nin Onaylanması Hakkında Azerbaycan Cumhuriyeti Cumhurbaşkanı'nın Kararnamesi. <https://e-qanun.az/framework/50013>
10. E-kanun. (16 Ocak 2025a). 'Azerbaycan Cumhuriyeti'nde Dijital Kalkınma Konsepsiyonu'nun Onaylanması Hakkında Azerbaycan Cumhuriyeti Cumhurbaşkanı'nın Fermanı. <https://e-qanun.az/framework/58765>
11. E-kanun. (19 Mart 2025b). 'Azerbaycan Cumhuriyeti'nin 2025-2028 Yıllarına Yönelik Yapay Zekâ Stratejisi'nin Onaylanması Hakkında Azerbaycan Cumhuriyeti Cumhurbaşkanı'nın Kararnamesi. <https://e-qanun.az/framework/59218>
12. Google LLC. (2022). *Google for education: Impact report*. <https://edu.google.com/impact-report>
13. Hamidov, S. S. (2024). *Methods and tools for applying artificial intelligence in education*.
14. Kolkman, R. (2020). *Digital transformation in education: Challenges and opportunities*. Springer.
15. Mehralizadeh, F. (2024, March 3). *The impact of the pandemic on educational outcomes in Azerbaijan*. Baku Research Institute. <https://bakuresearchinstitute.org/en/the-impact-of-the-pandemic-on-educational-outcomes-in-azerbaijan/>
16. Muradov, A., Ahmadov, F., Hajiyeva, N., Sood, K., & Grima, S. (Eds.). (2025). *Sustainable Development and Green Innovation: Managing Risk through Interdisciplinary Approaches and Policy Strategies*. Emerald Group Publishing.
17. OECD. (2023). *Education policies and digital transformation: Key indicators*. OECD Publishing.
18. OECD. (2025). *Policies for the digital transformation of school education: Evidence from the Policy Survey on School Education in the Digital Age (OECD Education Working Papers No. 328)*. <https://www.oecd.org/content/dam/oecd/en/publications/reports/2025/03/policies-for-the->

digital-transformation-of-school-education_aee58b2f/464dab4d-en.pdf

- 19. Rahmanov, F., et al. (2025). *The impact of education digitalization on achieving SDG4: A comparative assessment of Azerbaijan and SDG4 leaders.* <https://www.businessperspectives.org/index.php/publishing-policies2/the-impact-of-education-digitalization-on-achieving-sdg4-a-comparative-assessment-of-azerbaijan-and-sdg4-leaders>
- 20. Rampelt, F., et al. (2019). *Bologna Digital 2020 - White paper on digitalisation in the European higher education area.*
- 21. Schwab, K. (2016). *The Fourth Industrial Revolution.* World Economic Forum.
- 22. State Statistical Committee of the Republic of Azerbaijan. (2021). *Information society statistics [Excel file].* https://www.stat.gov.az/source/information_society/az/001_7.xls
- 23. Suleymanov, T. (2020). *Educational technology adoption in Azerbaijani schools*
- 24. Suleymanov, T. (2020). *Educational technology adoption in Azerbaijani schools*
- 25. Tikhonova, E., et al. (2023). *Education 4.0: Concept, skills and research.* Springer.
- 26. UNEC Bünyesindeki Sosyal-Ekonominik Koleji. (20 Mayıs 2025). Adalet Muradov: UNEC, eğitimde yapay zekâ uygulamasına hazırlanmaktadır. <https://iqtisadkolleci.edu.az/manset/425-dalt-muradov-unc-suni-intellekti-thsil-ttbiq-etmy-hazrlar.html>
- 27. World Bank. (2023). *Digital transformation in education and skills development: Key shifts for systems change.* Washington, DC: World Bank. <https://openknowledge.worldbank.org>
- 28. Yadigarova, Z., Mikayilov, M., Əhmədov, E., & Salehli, F. (2024). *Bulud əsaslı elektron təhsil sisteminin kibertəhlükəsizlik problemlərinin tədqiqi*