

DOI: <https://doi.org/10.30546/301678.02.02.2025.011>

AI FOR INNOVATION AND ENTREPRENEURSHIP: A STRATEGIC FRAMEWORK FOR THE DIGITAL AGE

Karimova Gulnar Elmar

Azerbaijan State University of Economics (UNEC)

UNEC Business School

E-mail: gulnar.karimovam@gmail.com

SUMMARY

The rapid advancement of Artificial Intelligence (AI) is fundamentally restructuring the modern business landscape, establishing itself as a central pillar for both innovation and entrepreneurial endeavors. This extensive study provides a detailed analysis of AI's critical function throughout the entire entrepreneurial lifecycle, ranging from the initial identification of market opportunities and idea generation to the complex processes of venture acceleration, operational scaling, and sophisticated risk forecasting. The research meticulously investigates the mechanisms by which entrepreneurs achieve a sustainable competitive advantage through the strategic utilization of core AI-driven technologies, including Big Data Analytics, cognitive process automation, Generative AI for content and design, and hyper-personalized customer experience systems. The findings unequivocally demonstrate that a nuanced and strategic implementation of AI empowers startups to adopt more agile, data-centric, and ultimately higher-efficiency operating models. The paper expands upon these findings by offering a comprehensive strategic framework and practical recommendations for emerging entrepreneurs to effectively integrate AI into their business models for long-term growth and market dominance.

Keywords: *Artificial Intelligence, Innovation, Entrepreneurship, Startup, Data Analytics, Business Model, Competitive Advantage, Machine Learning*

JEL Classification Codes: **M26, O33**

INTRODUCTION

The current era, often termed the Fourth Industrial Revolution, is characterized by the confluence of physical, digital, and biological spheres, with Artificial Intelligence (AI) serving as its primary engine (Brynjolfsson & McAfee, 2014). AI, defined as the simulation of human intelligence processes by machines, particularly computer systems, is not merely optimizing existing business models but is fundamentally driving the emergence of entirely new entrepreneurial ecosystems and forms of innovation. For entrepreneurs and startup founders, AI represents a paradigm shift from reliance on traditional market research and intuition to the adoption of data-driven, predictive strategies.

Entrepreneurship is defined as the process of discovering, evaluating, and exploiting opportunities, with innovation—often viewed through the lens of Schumpeterian creative destruction (Schumpeter, 1934) being the key output of this process. AI acts as an accelerator, moving opportunities from discovery to exploitation with unprecedented speed and precision (Kaplan & Haenlein, 2020). To understand AI's essential impact, it is crucial to delineate its specific technologies and functions within a startup context, recognizing that AI is not a monolith but an umbrella term covering several critical sub-domains. These include:

- Machine Learning (ML) and Deep Learning (DL), the foundational ability for systems to automatically learn and improve, which are crucial for predictive analytics (forecasting sales, inventory, and churn) and customer segmentation.
- Natural Language Processing (NLP), which enables machines to understand and generate human language, vital for sentiment analysis and providing scalable customer support via chatbots.
- Computer Vision (CV), which allows machines to interpret the world visually, increasingly relevant for automated quality control and retail analytics;
- Generative AI (GenAI), which focuses on creating new content like text and images, offering a game-changer for content-heavy startups through rapid prototyping and content scaling.

Thus, the table below provides a comparative overview of these AI mechanisms and their primary entrepreneurial applications.

Table 1. Overview of AI Mechanisms and Their Entrepreneurial Applications

AI Mechanism	Key Function	Entrepreneurial Application	Impact on Efficiency
Machine Learning (ML)	Learning from data without explicit programming	Predictive analytics, customer segmentation	High - Enables data-driven decisions
Natural Language Processing (NLP)	Understanding and generating human language	Sentiment analysis, chatbots	Medium-High - Reduces customer service costs
Computer Vision (CV)	Visual interpretation	Quality control, retail analytics	High - Automates visual inspections
Generative AI (GenAI)	Content creation	Rapid prototyping, content scaling	Very High - Accelerates innovation cycles

Source: Table 1 provides an overview of key AI mechanisms and how they are used in entrepreneurial settings, informed by foundational work in ML (Jordan & Mitchell, 2015), NLP (Hirschberg & Manning, 2015), CV (Szeliski, 2022), and GenAI (Bommasani et al., 2021)

Table 1 illustrates how each mechanism contributes uniquely to startup operations, with GenAI showing the highest potential for efficiency gains in creative processes. These AI mechanisms allow entrepreneurs to make faster, more informed decisions and automate key parts of their operations, helping them stay agile in changing markets. By applying predictive, language-based, visual, and generative tools, entrepreneurs can also overcome resource limitations, speed up innovation, and build more scalable business models that strengthen overall performance. This paper aims to provide an exhaustive, multi-faceted analysis of the strategic imperative of AI in modern innovation and entrepreneurship. We will explore how AI technologies impact every stage of the entrepreneurial journey, from identifying nascent opportunities and structuring business models to scaling operations and securing investment. The study will culminate in a prescriptive framework for leveraging AI to achieve long-term competitive success.

AI's Role in Opportunity Identification and Idea Generation

The initial phase of entrepreneurship finding a viable idea is fundamentally transformed by AI, moving from relying on anecdotal evidence to identifying quantifiable unmet needs. AI systems, particularly Machine Learning (ML) and Deep Learning (DL), achieve this through Big Data Analytics by processing and synthesizing massive, unstructured datasets. This capability provides three key advantages in idea discovery: it enables Trend Spotting, where AI monitors millions of data points across social media, forums, and search queries to detect emerging consumer behaviors or technological trends before they reach the mainstream (Xiang & Gretzel, 2010), allowing startups to enter nascent markets before competitors; it facilitates Demand Forecasting by analyzing

competitor pricing, seasonal shifts, and macroeconomic indicators to pinpoint specific areas where current market offerings are inadequate or priced incorrectly, thereby defining a clear "white space" for a new venture; and finally, it leads to Hidden Correlation Discovery, where AI identifies non-obvious correlations between seemingly unrelated data points (e.g., weather patterns and mobile app usage for a specific service), resulting in genuinely novel product ideas. Recent studies show that AI is increasingly becoming part of how entrepreneurs work, mainly because it helps them make clearer decisions and manage tasks more efficiently. Researchers also point out that technologies like machine learning, NLP, computer vision, and generative AI give entrepreneurs new ways to spot opportunities and experiment with innovative ideas. Overall, the literature suggests that these tools are reshaping the entrepreneurial landscape by allowing businesses to move faster, scale more easily, and plan with greater confidence. Traditional research involves manual review of academic literature and patents. AI automates this process by providing support tools for researches (Chesbrough, 2003).

- Literature Mapping: NLP algorithms quickly summarize thousands of scientific papers and patents, identifying common technological pain points or areas where innovation is stalled.
- Technological Adjacencies: AI can suggest novel combinations of existing technologies or identify adjacent fields where a known solution could be repurposed, accelerating process innovation.

AI enables rapid, inexpensive validation of the Minimum Viable Product (MVP) concept through two main mechanisms. First, it facilitates Simulated Customer Feedback: Natural Language Processing (NLP) can be used to analyze feedback on hypothetical product descriptions or early mock-ups sourced from online communities, providing directional validation without incurring the expense of building a full prototype. Second, AI provides A/B Testing Optimization: AI dynamically adjusts ad placement and content during initial A/B tests to converge on the most effective value proposition and target audience significantly faster than traditional, static methods.

AI in Business Model Innovation and Strategic Structuring

AI is integral to designing scalable and resilient business models primarily by introducing dynamic pricing, moving beyond static cost-plus models (Kandampully, 2015), and by maximizing the return on marketing investment (ROMI). AI's pricing capabilities include Dynamic Pricing, where ML algorithms adjust prices in real-time based on factors like demand, competitor actions, inventory, and customer willingness-to-pay, proving highly effective in sectors such as hospitality,

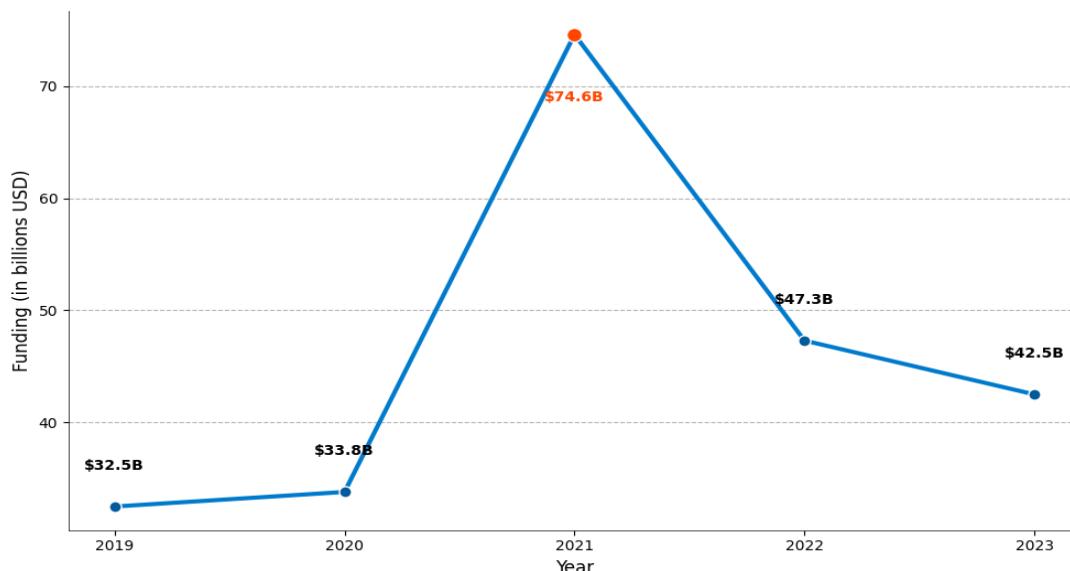
e-commerce, and logistics (Buhalis, 2003); and Subscription Model Refinement, where AI analyzes customer usage patterns to suggest optimal tiered pricing and identify potential churn risks, thereby helping businesses transition to recurring revenue models. Concurrently, AI maximizes ROMI by focusing on personalization and efficiency through Hyper-Targeting, where AI-powered ad platforms use complex behavioral data to target micro-segments with extreme precision, ensuring marketing spend reaches the audience most likely to convert (Chaffey & Ellis-Chadwick, 2019; Jansen & Schuster, 2011) and Content Personalization, where Generative AI (GenAI) produces tailored marketing collateral for different customer segments, dramatically improving engagement and conversion rates, which is crucial for brand awareness and customer engagement (Gentsch, 2019; Tuten & Solomon, 2018). Startups commonly face high failure rates, often due to unforeseen financial or regulatory risks, a challenge that AI effectively mitigates through two key functions. First, AI enhances Fraud Detection: Machine Learning (ML) models monitor transactions and flag anomalies in real-time, thereby protecting the business from financial loss and maintaining customer trust. Second, AI provides Compliance Monitoring: Natural Language Processing (NLP) tools continuously monitor changes in local and international regulations, promptly alerting the startup to necessary adjustments in policies or operations, which is crucial for successful global expansion. As a startup moves from the validation phase to the scaling phase, AI becomes essential for managing complexity and achieving operational excellence.

Robotic Process Automation (RPA) and Efficiency

Robotic Process Automation (RPA), often enhanced with cognitive capabilities known as Cognitive Automation, involves using software robots to automate high-volume, repetitive, and rule-based processes (Daugherty & Wilson, 2018). This automation yields three critical benefits for startups: it enables Back-Office Automation, automating tasks such as invoice processing, payroll inputs, and data entry, which frees up valuable human capital—often a startup's scarcest resource—to focus on core innovation; it allows for Supply Chain Optimization, where AI predicts potential disruptions (e.g., weather events, political instability) and dynamically reroutes logistics, ensuring business continuity and efficiency in the global supply chain; and finally, it drives Inventory Optimization, where Deep Learning models analyze thousands of variables (including sales history, promotional plans, and seasonality) to predict optimal inventory levels, thereby minimizing storage costs and avoiding stockouts. AI facilitates critical growth management by simultaneously Scaling Customer Experience (CX) and refining the hiring process for talent. AI ensures customer support scales linearly, maintaining quality as the user base grows (Gentsch, 2019), through Intelligent

Routing and Triage (where NLP analyzes queries and routes them to the best agent or system, reducing response times). Proactive Service (where AI models predict which customers need assistance before they reach out, allowing for competitive intervention); and Personalization at Scale (where AI customizes the entire customer journey, ensuring millions receive a 'one-to-one' experience). Concurrently, for finding the right talent, AI helps refine the hiring process via Automated Sourcing (where AI sifts through resumes to match candidates to requirements with greater speed and less bias than manual review) and Predictive Retention (where ML analyzes employee data to predict which employees are at risk of leaving, enabling management to take targeted retention actions).

The AI-Entrepreneurial Ecosystem and Financing


The relationship between AI and financing is symbiotic: AI-powered startups are inherently more attractive to investors, and AI itself is transforming the venture capital (VC) landscape. AI makes startups more appealing by: offering reduced uncertainty, as its ability to provide granular predictive analytics on market size, operational costs, and customer churn significantly reduces the perceived risk for potential investors and establishing defensibility, as startups whose core product is built on proprietary data and sophisticated ML models have a higher degree of defensibility (moats) against competitors, which VCs highly value. AI is changing VC and due diligence practices through Automated Deal Sourcing, where VC firms use AI to screen company data, news, and social media trends to identify promising early-stage startups that fit their investment thesis, expanding their deal flow beyond traditional networks; and through Predictive Due Diligence, where AI analyzes a startup's data against industry benchmarks to flag anomalies or overoptimistic projections, making the diligence process faster and more robust. To visualize the growing influence of AI on startup success and funding, the chart depicting global funding trends for AI startups illustrates how AI integration correlates with increased venture capital inflows, supporting the argument for AI as a key defensibility factor (Gompers, 2020). This pattern highlights a self-reinforcing funding cycle where the predictive capabilities of AI validate the investment risk, simultaneously justifying the premium valuations that venture capital firms are willing to assign to these data-driven enterprises (Musayev, 2025). The necessity of establishing technological defensibility through AI models suggests that current VC investment strategy is increasingly prioritizing intellectual property over market size alone as a primary indicator of long-term success and competitive moats. Consequently, the reliance on AI for due diligence, particularly through automated screening and benchmark analysis, signals a broader industry shift away from subjective,

network-driven deal flow toward an objective, data-intensive approach to capital allocation.

Figure 1 shows that investment in AI startups rose gradually from 2019 to 2020, then jumped sharply in 2021 to its highest point. This major spike suggests that investors saw strong potential in AI during that time, likely encouraged by rapid digital transformation and noticeable progress in AI technologies. Although funding dipped in 2022 and 2023, it stayed higher than the levels seen before 2021, which points to continued confidence in the sector. Overall, the pattern suggests that while the 2021 peak was unusual, interest in AI startups remains strong and stable.

For family-founded enterprises, securing capital traditionally relies on a calculated mix of internal self-funding and external investment. At the core of this structure lies accumulated family savings, often serving as the crucial initial seed money that establishes foundational operations and ensures stability in the early phases.

Figure 1. Global AI Startup Funding (2019-2023)

Source: Data extracted and prepared by the author basis on shared data.

When looking outward, these firms routinely engage in standard bank credits a conventional mechanism provided by commercial lenders-to fuel significant expansion efforts, manage day-to-day working capital needs, and finance large investments in physical assets. Crucially, access to concessional loans, which offer preferential terms like lower-than-market interest rates and flexible repayment schedules, has historically been a vital financial tool supporting growth, especially for family businesses operating in specialized or developing market sectors. Furthermore, direct

involvement from the government, in the form of state-sponsored preferential support mechanisms (such as direct grants, subsidized credit facilities, and tax relief), represents a long-standing method of financial aid designed to incentivize new investment and mitigate commercial risks for these family-run organizations.

Figure 2: Startup valuation and funding trends (2020-2024)

Source: Data extracted and prepared by the author on a basis on shared data.

Analysis of these figure shows that AI startups have captured a disproportionate share of venture funding in recent years, with investments surging as adoption rates climb. For instance, AI-focused ventures often see higher success rates in fundraising rounds due to their data-driven models, aligning with the reduced uncertainty highlighted earlier. However, this also points to a potential bubble risk if pilot failures (95% as per MIT) are not addressed.

The aggressive use of AI in innovation introduces new challenges related to intellectual property (IP) and ethics that entrepreneurs must navigate. Legally, when Generative AI (GenAI) creates novel code, designs, or literary works, the legal ownership of the resulting IP is often ambiguous (Lemley, M. A. 2017). To manage this, entrepreneurs must prioritize Strategic IP Management by establishing clear policies regarding the use of proprietary data to train AI models and defining ownership of AI-generated output to protect future patents and copyrights. Additionally, Transparency is key, requiring startups to be open about the use of AI in their products, especially if it affects the attribution of creative work. Ethically, AI models trained on biased data can perpetuate or even amplify societal biases in hiring, lending, or customer targeting; thus, founders must address this through Data Vetting, meticulously checking datasets used to train

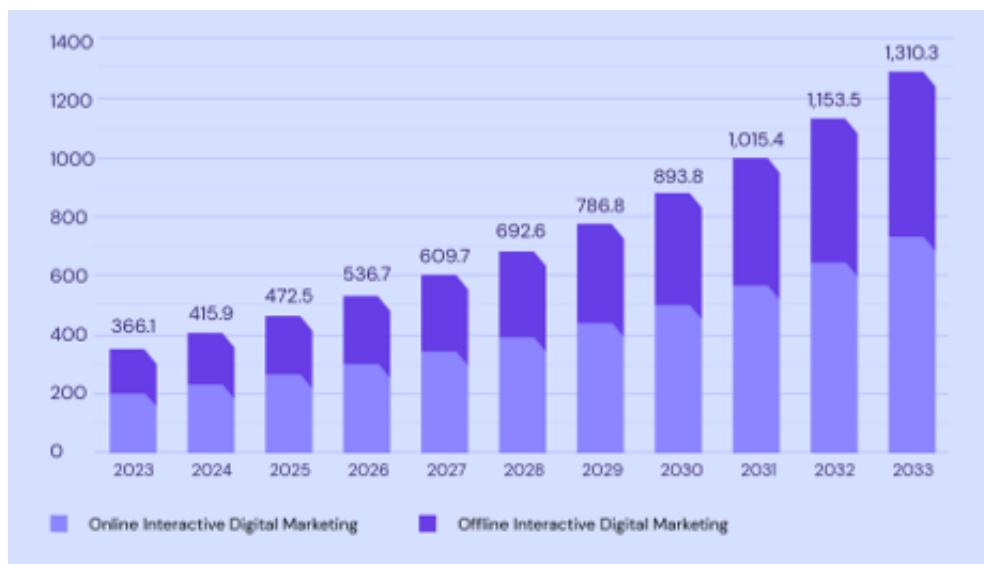
their AI models to ensure fairness across demographic groups. Finally, to enhance accountability and trust (Kaplan & Haenlein, 2020; Davenport, 2017), entrepreneurs should strive to use models that offer a degree of Explainable AI (XAI), allowing humans to understand why a particular decision (e.g., denying a loan or flagging a transaction) was made.

Strategic Framework for AI Integration in Entrepreneurial Ventures

To effectively leverage AI, entrepreneurs must follow a structured approach that spans technology, talent, and strategy.

Phase 1: AI Readiness and Scoping (Chaffey & Ellis-Chadwick, 2019)

- Data Audit: Assess the quality, volume, and structure of existing company data. AI is only as good as the data it consumes (Chaffey & Ellis-Chadwick, 2019).
- Identify Pain Points: Do not implement AI for its own sake. Target specific, measurable business pain points (e.g., "reduce customer support response time by 50%," "improve lead conversion rate by 20%").
- Build/Buy/Partner Decision: Determine whether to build custom AI tools, purchase off-the-shelf solutions (SaaS), or partner with specialized AI firms.


Phase 2: Pilot and Iteration (Ries, 2011)

- Start Small: Implement the AI solution in a confined, non-critical area of the business (e.g., automating internal report generation) to test performance and iron out kinks.
- Define Metrics (KPIs): Clearly establish how success will be measured (e.g., \$ROI\$, accuracy rate, time saved).
- Iterative Refinement: Use the initial results to refine the model (model retraining) and adjust the implementation strategy before scaling. This mirrors the Lean Startup methodology (Ries, 2011).

Phase 3: Scaling and Governance (Daugherty & Wilson, 2018)

- Full Integration: Seamlessly integrate the proven AI solution into the core business model and all relevant departments.
- Training and Upskilling: Invest in training existing staff on how to work *with* AI, not against it, fostering a hybrid human-AI workflow.
- Governance and Ethics: Formalize internal policies for data privacy, model monitoring, bias correction, and accountability.

Figure 3: Forecasting the global market size for online and offline digital marketing (2023-2033)

Source: Data compiled and extracted from research findings provided by the www.hostinger.com.

This figure reveals a period of significant growth followed by market stabilization in startup funding and valuation metrics. Pre-Money Valuation exhibited a robust increase from \$8.1 million in 2020 to a peak of \$13.2 million in 2022, before experiencing a moderate decline to \$12.0 million in 2023 and slightly recovering to \$12.5 million in 2024. Similarly, Cash Raised in Round peaked at \$3.5 million in 2022, dipping to \$3.0 million in 2023, and then recovering to the peak amount of \$3.5 million in 2024, demonstrating resilience in capital infusion despite fluctuations in valuation. The forecasted 42% growth in Pre-Money Valuation and 21% growth in Cash Raised by the end of 2024 suggest a projected rebound and a continued willingness among investors to support startup ventures.

CONCLUSION

Artificial Intelligence is no longer a futuristic concept but the bedrock of successful modern entrepreneurship (Brynjolfsson & McAfee, 2014; Davenport, 2017). Its capabilities in data analysis, predictive modeling, and automation provide startups with unprecedented speed, efficiency, and market penetration capabilities. Ventures that prioritize AI integration are effectively building a *future-proof business model* one that is inherently more agile, data-informed, and capable of sustained competitive advantage (Barney, 1991). For aspiring entrepreneurs, the challenge is clear: mastering the strategic application of AI is now as fundamental as understanding finance or marketing. The firms that will dominate the next decade will be those that view AI not as a cost center, but as the essential tool for driving relentless, scalable innovation (Teece, 2018).

Incorporating the latest 2025 data, it's evident that while adoption is high (78% of organizations), the gap between experimentation and scaling remains a hurdle. Startups must focus on ethical, measurable integrations to capitalize on the projected market growth to \$707.75 billion by 2034 (<https://www.walkme.com/blog/ai-adoption-statistics/>).

REFERENCES

1. Buhalis, D. (2003). *eTourism: Information Technology for Strategic Tourism Management*.
2. Chaffey, D., & Ellis-Chadwick, F. (2019). *Digital Marketing* (7th ed.). Pearson Education.
3. Jansen, B. J., & Schuster, S. (2011). Bidding on the Buying Funnel for Sponsored Search and Keyword Advertising. *Journal of Electronic Commerce Research*.
4. Kandampully, J. (2015). *Service Management: The New Paradigm in Hospitality*. Pearson.
5. Kansakar, P., Munir, A., & Shabani, N. (2017). *Technology in Hospitality Industry: Prospects and Challenges*.
6. Palaniswamy, N. (2021). *Social Media Marketing: A Strategic Tool for Tourism Business Development*.
7. Tuten, T. L., & Solomon, M. R. (2018). *Social Media Marketing* (3rd ed.).
8. Xiang, Z., & Gretzel, U. (2010). Role of social media in online travel information search. *Tourism Management*, 31(2), 179–188.
9. Singel, R. (2010, October 27). Oct. 27, 1994: Web gives birth to banner ads. *WIRED*. <https://www.wired.com/2010/10/1027hotwired-banner-ads>.
10. İİTKM. (2023). Ayxan Qədəşov: “Rəqəmsallaşma yeni məhsul və xidmətlərin yaradılmasına təkan verir”. *Ereforms.gov.az*.
11. Blank, S. (2013). *The Four Steps to the Epiphany: Successful Strategies for Products that Win*. K&S Ranch.
12. Musayev, Y. U. S. İ. F. (2025). FAMILY BUSINESSES IN AZERBAIJAN: THEORETICAL BASIS AND EMPIRICAL RESULTS. *Актуальнi проблеми природничих i гуманітарних наук у дослiдженнях*, 233.
13. Ries, E. (2011). *The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses*. Crown Business.
14. Chesbrough, H. (2003). *Open Innovation: The New Imperative for Creating and Profiting from Technology*. Harvard Business School Press.
15. Brynjolfsson, E., & McAfee, A. (2014). *The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies*. W. W. Norton & Company.

16. Davenport, T. H. (2017). *The AI Advantage: How to Think Smartly About the End of Work*.
17. Teece, D. J. (2018). Business models and dynamic capabilities. *Long Range Planning*.
18. Daugherty, P. R., & Wilson, H. J. (2018). *Human + Machine: Reimagining Work in the Age of AI*. Harvard Business Review Press.
19. Shane, S. (2003). *A General Theory of Entrepreneurship: The Role of the Individual Opportunity*. Edward Elgar Publishing.
20. Gentsch, P. (2019). *AI in Marketing, Sales and Service: How to Use Artificial Intelligence to Create a Smart Customer Experience*. Springer.
21. Schumpeter, J. A. (1934). *The Theory of Economic Development*. Harvard University Press.
22. Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. *Business Horizons*, 63(1), 37-50.
23. Gompers, P. A., Gornall, J., Kaplan, S. N., & F. G. Strelalaev. (2020). Venture Capital Has an AI Problem. *Journal of Financial Economics*.
24. Lemley, M. A. (2017). The Surprising Virtues of Treating Copyright Like Trademark. *Texas Law Review*, 95(6), 1185-1206.
25. Jordan, M. I., & Mitchell, T. M. (2015). *Machine learning: Trends, perspectives, and prospects*. Science, 349(6245), 255–260.
26. Shalev-Shwartz, S., & Ben-David, S. (2014). *Understanding Machine Learning: From Theory to Algorithms*. Cambridge University Press.
27. Muradov, A. "Enhance the role university education in economic development." *Azerbaijan State University of Economics Scientific Reviews. Year 5* (2017): 5-16.
28. MUSAYEV, Y. STATE REGULATION OF FAMILY BUSINESSES IN THE EU AND AZERBAIJAN: A COMPARATIVE ANALYSIS. *ЭКОНОМИКА*, (11), 151-158.
29. Hirschberg, J., & Manning, C. D. (2015). *Advances in natural language processing*. Science, 349(6245), 261-266.
30. Musayev, Y. (2023). FACTORS IMPACTING FAMILY COMPANY CREATION AND GOVERNANCE CHARACTERISTICS.
31. Szeliski, R. (2022). *Computer Vision: Algorithms and Applications* (2nd ed.). Springer.
32. Musayev, Y. E. (2021). Qlobal iqtisadiyyatda ailə biznesləri və onların maliyyələşmə mənbələri. *Peşə təhsili və insan kapitalı: Elmi-praktiki, metodiki jurnal*, 4(4), 49–52. ISSN 2664-4770.
33. Bommasani, R. et al. (2021). *On the opportunities and risks of foundation models*. Stanford Institute for Human-Centered AI.

XÜLASƏ

Süni intellektin (Sİ) sürətli inkişafı müasir biznes mühitini əsaslı şəkildə yenidən qurur və həm innovasiyanın, həm də sahibkarlıq fəaliyyətlərinin mərkəzi dayaq nöqtəsinə çevirir. Bu genişləndirilmiş tədqiqat, Sİ-nin bütün sahibkarlıq həyat dövrü ərzindəki kritik funksiyasını – ilkin bazar imkanlarının müəyyən edilməsi və ideya yaranmasından, müəssisələrin sürətləndirilməsi, əməliyyatların genişləndirilməsi və mürəkkəb risklərin proqnozlaşdırılması proseslərinə qədər olan rolunu ətraflı təhlil edir. Tədqiqat, sahibkarların əsas Sİ yönümlü texnologiyalardan, o cümlədən Böyük Verilənlər Analitikası, koqnitiv proses avtomatlaşdırılması, məzmun və dizayn üçün Generativ Sİ və hiper-fərdiləşdirilmiş müştəri təcrübəsi sistemlərindən strateji istifadə etməklə necə davamlı rəqabət üstünlüyü əldə etdiyini dərinlənən araşdırır. Nəticələr qəti şəkildə göstərir ki, Sİ-nin detallı və strateji tətbiqi startaplara daha çevik, verilənlərə əsaslanan və nəticədə daha yüksək səmərəli əməliyyat modellərini mənimsəməyə imkan verir. Məqalə uzunmüddətli inkişaf və bazarda dayanıqlılıq üçün Sİ-ni öz biznes modellərinə effektiv şəkildə ineqrasiya etmək istəyən yeni sahibkarlar üçün hərtərəfli strateji çərçivə və praktiki tövsiyələr təqdim edir.

Açar sözlər: Süni intellekt, innovasiya, sahibkarlıq, startap, verilənlər analitikası, biznes modeli, rəqabət üstünlüyü, maşın öyrənməsi

JEL kodları : M26, O33